MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odhash3 Structured version   Visualization version   GIF version

Theorem odhash3 19594
Description: An element which generates a finite subgroup has order the size of that subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
odhash.x 𝑋 = (Base‘𝐺)
odhash.o 𝑂 = (od‘𝐺)
odhash.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
odhash3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂𝐴) = (♯‘(𝐾‘{𝐴})))

Proof of Theorem odhash3
StepHypRef Expression
1 odhash.x . . . . . 6 𝑋 = (Base‘𝐺)
2 odhash.o . . . . . 6 𝑂 = (od‘𝐺)
31, 2odcl 19554 . . . . 5 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
433ad2ant2 1135 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂𝐴) ∈ ℕ0)
5 hashcl 14395 . . . . . . 7 ((𝐾‘{𝐴}) ∈ Fin → (♯‘(𝐾‘{𝐴})) ∈ ℕ0)
65nn0red 12588 . . . . . 6 ((𝐾‘{𝐴}) ∈ Fin → (♯‘(𝐾‘{𝐴})) ∈ ℝ)
7 pnfnre 11302 . . . . . . . . . 10 +∞ ∉ ℝ
87neli 3048 . . . . . . . . 9 ¬ +∞ ∈ ℝ
9 odhash.k . . . . . . . . . . 11 𝐾 = (mrCls‘(SubGrp‘𝐺))
101, 2, 9odhash 19592 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (♯‘(𝐾‘{𝐴})) = +∞)
1110eleq1d 2826 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → ((♯‘(𝐾‘{𝐴})) ∈ ℝ ↔ +∞ ∈ ℝ))
128, 11mtbiri 327 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → ¬ (♯‘(𝐾‘{𝐴})) ∈ ℝ)
13123expia 1122 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 0 → ¬ (♯‘(𝐾‘{𝐴})) ∈ ℝ))
1413necon2ad 2955 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((♯‘(𝐾‘{𝐴})) ∈ ℝ → (𝑂𝐴) ≠ 0))
156, 14syl5 34 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝐾‘{𝐴}) ∈ Fin → (𝑂𝐴) ≠ 0))
16153impia 1118 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂𝐴) ≠ 0)
17 elnnne0 12540 . . . 4 ((𝑂𝐴) ∈ ℕ ↔ ((𝑂𝐴) ∈ ℕ0 ∧ (𝑂𝐴) ≠ 0))
184, 16, 17sylanbrc 583 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂𝐴) ∈ ℕ)
191, 2, 9odhash2 19593 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘(𝐾‘{𝐴})) = (𝑂𝐴))
2018, 19syld3an3 1411 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (♯‘(𝐾‘{𝐴})) = (𝑂𝐴))
2120eqcomd 2743 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂𝐴) = (♯‘(𝐾‘{𝐴})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  {csn 4626  cfv 6561  Fincfn 8985  cr 11154  0cc0 11155  +∞cpnf 11292  cn 12266  0cn0 12526  chash 14369  Basecbs 17247  mrClscmrc 17626  Grpcgrp 18951  SubGrpcsubg 19138  odcod 19542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-od 19546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator