MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odhash3 Structured version   Visualization version   GIF version

Theorem odhash3 19496
Description: An element which generates a finite subgroup has order the size of that subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
odhash.x 𝑋 = (Base‘𝐺)
odhash.o 𝑂 = (od‘𝐺)
odhash.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
odhash3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂𝐴) = (♯‘(𝐾‘{𝐴})))

Proof of Theorem odhash3
StepHypRef Expression
1 odhash.x . . . . . 6 𝑋 = (Base‘𝐺)
2 odhash.o . . . . . 6 𝑂 = (od‘𝐺)
31, 2odcl 19456 . . . . 5 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
433ad2ant2 1134 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂𝐴) ∈ ℕ0)
5 hashcl 14270 . . . . . . 7 ((𝐾‘{𝐴}) ∈ Fin → (♯‘(𝐾‘{𝐴})) ∈ ℕ0)
65nn0red 12454 . . . . . 6 ((𝐾‘{𝐴}) ∈ Fin → (♯‘(𝐾‘{𝐴})) ∈ ℝ)
7 pnfnre 11164 . . . . . . . . . 10 +∞ ∉ ℝ
87neli 3035 . . . . . . . . 9 ¬ +∞ ∈ ℝ
9 odhash.k . . . . . . . . . . 11 𝐾 = (mrCls‘(SubGrp‘𝐺))
101, 2, 9odhash 19494 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (♯‘(𝐾‘{𝐴})) = +∞)
1110eleq1d 2818 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → ((♯‘(𝐾‘{𝐴})) ∈ ℝ ↔ +∞ ∈ ℝ))
128, 11mtbiri 327 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → ¬ (♯‘(𝐾‘{𝐴})) ∈ ℝ)
13123expia 1121 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 0 → ¬ (♯‘(𝐾‘{𝐴})) ∈ ℝ))
1413necon2ad 2944 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((♯‘(𝐾‘{𝐴})) ∈ ℝ → (𝑂𝐴) ≠ 0))
156, 14syl5 34 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝐾‘{𝐴}) ∈ Fin → (𝑂𝐴) ≠ 0))
16153impia 1117 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂𝐴) ≠ 0)
17 elnnne0 12406 . . . 4 ((𝑂𝐴) ∈ ℕ ↔ ((𝑂𝐴) ∈ ℕ0 ∧ (𝑂𝐴) ≠ 0))
184, 16, 17sylanbrc 583 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂𝐴) ∈ ℕ)
191, 2, 9odhash2 19495 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘(𝐾‘{𝐴})) = (𝑂𝐴))
2018, 19syld3an3 1411 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (♯‘(𝐾‘{𝐴})) = (𝑂𝐴))
2120eqcomd 2739 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂𝐴) = (♯‘(𝐾‘{𝐴})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  {csn 4577  cfv 6489  Fincfn 8879  cr 11016  0cc0 11017  +∞cpnf 11154  cn 12136  0cn0 12392  chash 14244  Basecbs 17127  mrClscmrc 17493  Grpcgrp 18854  SubGrpcsubg 19041  odcod 19444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-acn 9846  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-dvds 16171  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-0g 17352  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-grp 18857  df-minusg 18858  df-sbg 18859  df-mulg 18989  df-subg 19044  df-od 19448
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator