Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > odhash3 | Structured version Visualization version GIF version |
Description: An element which generates a finite subgroup has order the size of that subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
Ref | Expression |
---|---|
odhash.x | ⊢ 𝑋 = (Base‘𝐺) |
odhash.o | ⊢ 𝑂 = (od‘𝐺) |
odhash.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
Ref | Expression |
---|---|
odhash3 | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂‘𝐴) = (♯‘(𝐾‘{𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odhash.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
2 | odhash.o | . . . . . 6 ⊢ 𝑂 = (od‘𝐺) | |
3 | 1, 2 | odcl 18928 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈ ℕ0) |
4 | 3 | 3ad2ant2 1136 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂‘𝐴) ∈ ℕ0) |
5 | hashcl 13923 | . . . . . . 7 ⊢ ((𝐾‘{𝐴}) ∈ Fin → (♯‘(𝐾‘{𝐴})) ∈ ℕ0) | |
6 | 5 | nn0red 12151 | . . . . . 6 ⊢ ((𝐾‘{𝐴}) ∈ Fin → (♯‘(𝐾‘{𝐴})) ∈ ℝ) |
7 | pnfnre 10874 | . . . . . . . . . 10 ⊢ +∞ ∉ ℝ | |
8 | 7 | neli 3048 | . . . . . . . . 9 ⊢ ¬ +∞ ∈ ℝ |
9 | odhash.k | . . . . . . . . . . 11 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
10 | 1, 2, 9 | odhash 18963 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (♯‘(𝐾‘{𝐴})) = +∞) |
11 | 10 | eleq1d 2822 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ((♯‘(𝐾‘{𝐴})) ∈ ℝ ↔ +∞ ∈ ℝ)) |
12 | 8, 11 | mtbiri 330 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ (♯‘(𝐾‘{𝐴})) ∈ ℝ) |
13 | 12 | 3expia 1123 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 0 → ¬ (♯‘(𝐾‘{𝐴})) ∈ ℝ)) |
14 | 13 | necon2ad 2955 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((♯‘(𝐾‘{𝐴})) ∈ ℝ → (𝑂‘𝐴) ≠ 0)) |
15 | 6, 14 | syl5 34 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝐾‘{𝐴}) ∈ Fin → (𝑂‘𝐴) ≠ 0)) |
16 | 15 | 3impia 1119 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂‘𝐴) ≠ 0) |
17 | elnnne0 12104 | . . . 4 ⊢ ((𝑂‘𝐴) ∈ ℕ ↔ ((𝑂‘𝐴) ∈ ℕ0 ∧ (𝑂‘𝐴) ≠ 0)) | |
18 | 4, 16, 17 | sylanbrc 586 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂‘𝐴) ∈ ℕ) |
19 | 1, 2, 9 | odhash2 18964 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → (♯‘(𝐾‘{𝐴})) = (𝑂‘𝐴)) |
20 | 18, 19 | syld3an3 1411 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (♯‘(𝐾‘{𝐴})) = (𝑂‘𝐴)) |
21 | 20 | eqcomd 2743 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂‘𝐴) = (♯‘(𝐾‘{𝐴}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 {csn 4541 ‘cfv 6380 Fincfn 8626 ℝcr 10728 0cc0 10729 +∞cpnf 10864 ℕcn 11830 ℕ0cn0 12090 ♯chash 13896 Basecbs 16760 mrClscmrc 17086 Grpcgrp 18365 SubGrpcsubg 18537 odcod 18916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-oadd 8206 df-omul 8207 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-inf 9059 df-oi 9126 df-card 9555 df-acn 9558 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-fz 13096 df-fzo 13239 df-fl 13367 df-mod 13443 df-seq 13575 df-exp 13636 df-hash 13897 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-dvds 15816 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-0g 16946 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-grp 18368 df-minusg 18369 df-sbg 18370 df-mulg 18489 df-subg 18540 df-od 18920 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |