Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > odhash3 | Structured version Visualization version GIF version |
Description: An element which generates a finite subgroup has order the size of that subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
Ref | Expression |
---|---|
odhash.x | ⊢ 𝑋 = (Base‘𝐺) |
odhash.o | ⊢ 𝑂 = (od‘𝐺) |
odhash.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
Ref | Expression |
---|---|
odhash3 | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂‘𝐴) = (♯‘(𝐾‘{𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odhash.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
2 | odhash.o | . . . . . 6 ⊢ 𝑂 = (od‘𝐺) | |
3 | 1, 2 | odcl 19217 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈ ℕ0) |
4 | 3 | 3ad2ant2 1133 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂‘𝐴) ∈ ℕ0) |
5 | hashcl 14149 | . . . . . . 7 ⊢ ((𝐾‘{𝐴}) ∈ Fin → (♯‘(𝐾‘{𝐴})) ∈ ℕ0) | |
6 | 5 | nn0red 12373 | . . . . . 6 ⊢ ((𝐾‘{𝐴}) ∈ Fin → (♯‘(𝐾‘{𝐴})) ∈ ℝ) |
7 | pnfnre 11095 | . . . . . . . . . 10 ⊢ +∞ ∉ ℝ | |
8 | 7 | neli 3048 | . . . . . . . . 9 ⊢ ¬ +∞ ∈ ℝ |
9 | odhash.k | . . . . . . . . . . 11 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
10 | 1, 2, 9 | odhash 19252 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (♯‘(𝐾‘{𝐴})) = +∞) |
11 | 10 | eleq1d 2821 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ((♯‘(𝐾‘{𝐴})) ∈ ℝ ↔ +∞ ∈ ℝ)) |
12 | 8, 11 | mtbiri 326 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ (♯‘(𝐾‘{𝐴})) ∈ ℝ) |
13 | 12 | 3expia 1120 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 0 → ¬ (♯‘(𝐾‘{𝐴})) ∈ ℝ)) |
14 | 13 | necon2ad 2955 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((♯‘(𝐾‘{𝐴})) ∈ ℝ → (𝑂‘𝐴) ≠ 0)) |
15 | 6, 14 | syl5 34 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝐾‘{𝐴}) ∈ Fin → (𝑂‘𝐴) ≠ 0)) |
16 | 15 | 3impia 1116 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂‘𝐴) ≠ 0) |
17 | elnnne0 12326 | . . . 4 ⊢ ((𝑂‘𝐴) ∈ ℕ ↔ ((𝑂‘𝐴) ∈ ℕ0 ∧ (𝑂‘𝐴) ≠ 0)) | |
18 | 4, 16, 17 | sylanbrc 583 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂‘𝐴) ∈ ℕ) |
19 | 1, 2, 9 | odhash2 19253 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → (♯‘(𝐾‘{𝐴})) = (𝑂‘𝐴)) |
20 | 18, 19 | syld3an3 1408 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (♯‘(𝐾‘{𝐴})) = (𝑂‘𝐴)) |
21 | 20 | eqcomd 2742 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂‘𝐴) = (♯‘(𝐾‘{𝐴}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 {csn 4570 ‘cfv 6465 Fincfn 8782 ℝcr 10949 0cc0 10950 +∞cpnf 11085 ℕcn 12052 ℕ0cn0 12312 ♯chash 14123 Basecbs 16986 mrClscmrc 17366 Grpcgrp 18650 SubGrpcsubg 18822 odcod 19205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-inf2 9476 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 ax-pre-sup 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-oadd 8349 df-omul 8350 df-er 8547 df-map 8666 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-sup 9277 df-inf 9278 df-oi 9345 df-card 9774 df-acn 9777 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 df-nn 12053 df-2 12115 df-3 12116 df-n0 12313 df-z 12399 df-uz 12662 df-rp 12810 df-fz 13319 df-fzo 13462 df-fl 13591 df-mod 13669 df-seq 13801 df-exp 13862 df-hash 14124 df-cj 14886 df-re 14887 df-im 14888 df-sqrt 15022 df-abs 15023 df-dvds 16040 df-sets 16939 df-slot 16957 df-ndx 16969 df-base 16987 df-ress 17016 df-plusg 17049 df-0g 17226 df-mre 17369 df-mrc 17370 df-acs 17372 df-mgm 18400 df-sgrp 18449 df-mnd 18460 df-submnd 18505 df-grp 18653 df-minusg 18654 df-sbg 18655 df-mulg 18774 df-subg 18825 df-od 19209 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |