| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odhash3 | Structured version Visualization version GIF version | ||
| Description: An element which generates a finite subgroup has order the size of that subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| odhash.x | ⊢ 𝑋 = (Base‘𝐺) |
| odhash.o | ⊢ 𝑂 = (od‘𝐺) |
| odhash.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
| Ref | Expression |
|---|---|
| odhash3 | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂‘𝐴) = (♯‘(𝐾‘{𝐴}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odhash.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | odhash.o | . . . . . 6 ⊢ 𝑂 = (od‘𝐺) | |
| 3 | 1, 2 | odcl 19443 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈ ℕ0) |
| 4 | 3 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂‘𝐴) ∈ ℕ0) |
| 5 | hashcl 14258 | . . . . . . 7 ⊢ ((𝐾‘{𝐴}) ∈ Fin → (♯‘(𝐾‘{𝐴})) ∈ ℕ0) | |
| 6 | 5 | nn0red 12438 | . . . . . 6 ⊢ ((𝐾‘{𝐴}) ∈ Fin → (♯‘(𝐾‘{𝐴})) ∈ ℝ) |
| 7 | pnfnre 11148 | . . . . . . . . . 10 ⊢ +∞ ∉ ℝ | |
| 8 | 7 | neli 3034 | . . . . . . . . 9 ⊢ ¬ +∞ ∈ ℝ |
| 9 | odhash.k | . . . . . . . . . . 11 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
| 10 | 1, 2, 9 | odhash 19481 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (♯‘(𝐾‘{𝐴})) = +∞) |
| 11 | 10 | eleq1d 2816 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ((♯‘(𝐾‘{𝐴})) ∈ ℝ ↔ +∞ ∈ ℝ)) |
| 12 | 8, 11 | mtbiri 327 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ (♯‘(𝐾‘{𝐴})) ∈ ℝ) |
| 13 | 12 | 3expia 1121 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 0 → ¬ (♯‘(𝐾‘{𝐴})) ∈ ℝ)) |
| 14 | 13 | necon2ad 2943 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((♯‘(𝐾‘{𝐴})) ∈ ℝ → (𝑂‘𝐴) ≠ 0)) |
| 15 | 6, 14 | syl5 34 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝐾‘{𝐴}) ∈ Fin → (𝑂‘𝐴) ≠ 0)) |
| 16 | 15 | 3impia 1117 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂‘𝐴) ≠ 0) |
| 17 | elnnne0 12390 | . . . 4 ⊢ ((𝑂‘𝐴) ∈ ℕ ↔ ((𝑂‘𝐴) ∈ ℕ0 ∧ (𝑂‘𝐴) ≠ 0)) | |
| 18 | 4, 16, 17 | sylanbrc 583 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂‘𝐴) ∈ ℕ) |
| 19 | 1, 2, 9 | odhash2 19482 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → (♯‘(𝐾‘{𝐴})) = (𝑂‘𝐴)) |
| 20 | 18, 19 | syld3an3 1411 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (♯‘(𝐾‘{𝐴})) = (𝑂‘𝐴)) |
| 21 | 20 | eqcomd 2737 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂‘𝐴) = (♯‘(𝐾‘{𝐴}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {csn 4571 ‘cfv 6476 Fincfn 8864 ℝcr 11000 0cc0 11001 +∞cpnf 11138 ℕcn 12120 ℕ0cn0 12376 ♯chash 14232 Basecbs 17115 mrClscmrc 17480 Grpcgrp 18841 SubGrpcsubg 19028 odcod 19431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-acn 9830 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-fz 13403 df-fzo 13550 df-fl 13691 df-mod 13769 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-dvds 16159 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-0g 17340 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-od 19435 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |