![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odhash3 | Structured version Visualization version GIF version |
Description: An element which generates a finite subgroup has order the size of that subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
Ref | Expression |
---|---|
odhash.x | ⊢ 𝑋 = (Base‘𝐺) |
odhash.o | ⊢ 𝑂 = (od‘𝐺) |
odhash.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
Ref | Expression |
---|---|
odhash3 | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂‘𝐴) = (♯‘(𝐾‘{𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odhash.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
2 | odhash.o | . . . . . 6 ⊢ 𝑂 = (od‘𝐺) | |
3 | 1, 2 | odcl 19498 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈ ℕ0) |
4 | 3 | 3ad2ant2 1131 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂‘𝐴) ∈ ℕ0) |
5 | hashcl 14355 | . . . . . . 7 ⊢ ((𝐾‘{𝐴}) ∈ Fin → (♯‘(𝐾‘{𝐴})) ∈ ℕ0) | |
6 | 5 | nn0red 12571 | . . . . . 6 ⊢ ((𝐾‘{𝐴}) ∈ Fin → (♯‘(𝐾‘{𝐴})) ∈ ℝ) |
7 | pnfnre 11293 | . . . . . . . . . 10 ⊢ +∞ ∉ ℝ | |
8 | 7 | neli 3045 | . . . . . . . . 9 ⊢ ¬ +∞ ∈ ℝ |
9 | odhash.k | . . . . . . . . . . 11 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
10 | 1, 2, 9 | odhash 19536 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (♯‘(𝐾‘{𝐴})) = +∞) |
11 | 10 | eleq1d 2814 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ((♯‘(𝐾‘{𝐴})) ∈ ℝ ↔ +∞ ∈ ℝ)) |
12 | 8, 11 | mtbiri 326 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ (♯‘(𝐾‘{𝐴})) ∈ ℝ) |
13 | 12 | 3expia 1118 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 0 → ¬ (♯‘(𝐾‘{𝐴})) ∈ ℝ)) |
14 | 13 | necon2ad 2952 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((♯‘(𝐾‘{𝐴})) ∈ ℝ → (𝑂‘𝐴) ≠ 0)) |
15 | 6, 14 | syl5 34 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝐾‘{𝐴}) ∈ Fin → (𝑂‘𝐴) ≠ 0)) |
16 | 15 | 3impia 1114 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂‘𝐴) ≠ 0) |
17 | elnnne0 12524 | . . . 4 ⊢ ((𝑂‘𝐴) ∈ ℕ ↔ ((𝑂‘𝐴) ∈ ℕ0 ∧ (𝑂‘𝐴) ≠ 0)) | |
18 | 4, 16, 17 | sylanbrc 581 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂‘𝐴) ∈ ℕ) |
19 | 1, 2, 9 | odhash2 19537 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → (♯‘(𝐾‘{𝐴})) = (𝑂‘𝐴)) |
20 | 18, 19 | syld3an3 1406 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (♯‘(𝐾‘{𝐴})) = (𝑂‘𝐴)) |
21 | 20 | eqcomd 2734 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾‘{𝐴}) ∈ Fin) → (𝑂‘𝐴) = (♯‘(𝐾‘{𝐴}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 {csn 4632 ‘cfv 6553 Fincfn 8970 ℝcr 11145 0cc0 11146 +∞cpnf 11283 ℕcn 12250 ℕ0cn0 12510 ♯chash 14329 Basecbs 17187 mrClscmrc 17570 Grpcgrp 18897 SubGrpcsubg 19082 odcod 19486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9672 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-oadd 8497 df-omul 8498 df-er 8731 df-map 8853 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-sup 9473 df-inf 9474 df-oi 9541 df-card 9970 df-acn 9973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-z 12597 df-uz 12861 df-rp 13015 df-fz 13525 df-fzo 13668 df-fl 13797 df-mod 13875 df-seq 14007 df-exp 14067 df-hash 14330 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-dvds 16239 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-0g 17430 df-mre 17573 df-mrc 17574 df-acs 17576 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-submnd 18748 df-grp 18900 df-minusg 18901 df-sbg 18902 df-mulg 19031 df-subg 19085 df-od 19490 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |