MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephprc Structured version   Visualization version   GIF version

Theorem alephprc 10012
Description: The class of all transfinite cardinal numbers (the range of the aleph function) is a proper class. Proposition 10.26 of [TakeutiZaring] p. 90. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
alephprc ¬ ran ℵ ∈ V

Proof of Theorem alephprc
StepHypRef Expression
1 cardprc 9895 . . . 4 {𝑥 ∣ (card‘𝑥) = 𝑥} ∉ V
21neli 3031 . . 3 ¬ {𝑥 ∣ (card‘𝑥) = 𝑥} ∈ V
3 cardnum 10007 . . . 4 {𝑥 ∣ (card‘𝑥) = 𝑥} = (ω ∪ ran ℵ)
43eleq1i 2819 . . 3 ({𝑥 ∣ (card‘𝑥) = 𝑥} ∈ V ↔ (ω ∪ ran ℵ) ∈ V)
52, 4mtbi 322 . 2 ¬ (ω ∪ ran ℵ) ∈ V
6 omex 9558 . . 3 ω ∈ V
7 unexg 7683 . . 3 ((ω ∈ V ∧ ran ℵ ∈ V) → (ω ∪ ran ℵ) ∈ V)
86, 7mpan 690 . 2 (ran ℵ ∈ V → (ω ∪ ran ℵ) ∈ V)
95, 8mto 197 1 ¬ ran ℵ ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3438  cun 3903  ran crn 5624  cfv 6486  ωcom 7806  cardccrd 9850  cale 9851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-oi 9421  df-har 9468  df-card 9854  df-aleph 9855
This theorem is referenced by:  unialeph  10014
  Copyright terms: Public domain W3C validator