![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1nn0clb | Structured version Visualization version GIF version |
Description: A polynomial is nonzero iff it has definite degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
deg1z.d | ⊢ 𝐷 = (deg1‘𝑅) |
deg1z.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1z.z | ⊢ 0 = (0g‘𝑃) |
deg1nn0cl.b | ⊢ 𝐵 = (Base‘𝑃) |
Ref | Expression |
---|---|
deg1nn0clb | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐹 ≠ 0 ↔ (𝐷‘𝐹) ∈ ℕ0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1z.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
2 | deg1z.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | deg1z.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
4 | deg1nn0cl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
5 | 1, 2, 3, 4 | deg1nn0cl 26147 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) |
6 | 5 | 3expia 1121 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐹 ≠ 0 → (𝐷‘𝐹) ∈ ℕ0)) |
7 | mnfnre 11333 | . . . . . . 7 ⊢ -∞ ∉ ℝ | |
8 | 7 | neli 3054 | . . . . . 6 ⊢ ¬ -∞ ∈ ℝ |
9 | nn0re 12562 | . . . . . 6 ⊢ (-∞ ∈ ℕ0 → -∞ ∈ ℝ) | |
10 | 8, 9 | mto 197 | . . . . 5 ⊢ ¬ -∞ ∈ ℕ0 |
11 | 1, 2, 3 | deg1z 26146 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝐷‘ 0 ) = -∞) |
12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐷‘ 0 ) = -∞) |
13 | 12 | eleq1d 2829 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → ((𝐷‘ 0 ) ∈ ℕ0 ↔ -∞ ∈ ℕ0)) |
14 | 10, 13 | mtbiri 327 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → ¬ (𝐷‘ 0 ) ∈ ℕ0) |
15 | fveq2 6920 | . . . . . 6 ⊢ (𝐹 = 0 → (𝐷‘𝐹) = (𝐷‘ 0 )) | |
16 | 15 | eleq1d 2829 | . . . . 5 ⊢ (𝐹 = 0 → ((𝐷‘𝐹) ∈ ℕ0 ↔ (𝐷‘ 0 ) ∈ ℕ0)) |
17 | 16 | notbid 318 | . . . 4 ⊢ (𝐹 = 0 → (¬ (𝐷‘𝐹) ∈ ℕ0 ↔ ¬ (𝐷‘ 0 ) ∈ ℕ0)) |
18 | 14, 17 | syl5ibrcom 247 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐹 = 0 → ¬ (𝐷‘𝐹) ∈ ℕ0)) |
19 | 18 | necon2ad 2961 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → ((𝐷‘𝐹) ∈ ℕ0 → 𝐹 ≠ 0 )) |
20 | 6, 19 | impbid 212 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐹 ≠ 0 ↔ (𝐷‘𝐹) ∈ ℕ0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ‘cfv 6573 ℝcr 11183 -∞cmnf 11322 ℕ0cn0 12553 Basecbs 17258 0gc0g 17499 Ringcrg 20260 Poly1cpl1 22199 deg1cdg1 26113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-subg 19163 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-ur 20209 df-ring 20262 df-cring 20263 df-cnfld 21388 df-psr 21952 df-mpl 21954 df-opsr 21956 df-psr1 22202 df-ply1 22204 df-mdeg 26114 df-deg1 26115 |
This theorem is referenced by: deg1ldgn 26152 ply1domn 26183 uc1pmon1p 26211 ply1remlem 26224 fta1glem1 26227 fta1g 26229 idomrootle 26232 lgsqrlem4 27411 ply1dg1rt 33569 ply1dg3rt0irred 33572 aks6d1c2lem4 42084 aks6d1c5lem3 42094 aks6d1c6lem1 42127 aks6d1c6lem3 42129 mon1psubm 43160 |
Copyright terms: Public domain | W3C validator |