![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1nn0clb | Structured version Visualization version GIF version |
Description: A polynomial is nonzero iff it has definite degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
deg1z.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1z.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1z.z | ⊢ 0 = (0g‘𝑃) |
deg1nn0cl.b | ⊢ 𝐵 = (Base‘𝑃) |
Ref | Expression |
---|---|
deg1nn0clb | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐹 ≠ 0 ↔ (𝐷‘𝐹) ∈ ℕ0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1z.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
2 | deg1z.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | deg1z.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
4 | deg1nn0cl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
5 | 1, 2, 3, 4 | deg1nn0cl 25476 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) |
6 | 5 | 3expia 1122 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐹 ≠ 0 → (𝐷‘𝐹) ∈ ℕ0)) |
7 | mnfnre 11206 | . . . . . . 7 ⊢ -∞ ∉ ℝ | |
8 | 7 | neli 3048 | . . . . . 6 ⊢ ¬ -∞ ∈ ℝ |
9 | nn0re 12430 | . . . . . 6 ⊢ (-∞ ∈ ℕ0 → -∞ ∈ ℝ) | |
10 | 8, 9 | mto 196 | . . . . 5 ⊢ ¬ -∞ ∈ ℕ0 |
11 | 1, 2, 3 | deg1z 25475 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝐷‘ 0 ) = -∞) |
12 | 11 | adantr 482 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐷‘ 0 ) = -∞) |
13 | 12 | eleq1d 2819 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → ((𝐷‘ 0 ) ∈ ℕ0 ↔ -∞ ∈ ℕ0)) |
14 | 10, 13 | mtbiri 327 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → ¬ (𝐷‘ 0 ) ∈ ℕ0) |
15 | fveq2 6846 | . . . . . 6 ⊢ (𝐹 = 0 → (𝐷‘𝐹) = (𝐷‘ 0 )) | |
16 | 15 | eleq1d 2819 | . . . . 5 ⊢ (𝐹 = 0 → ((𝐷‘𝐹) ∈ ℕ0 ↔ (𝐷‘ 0 ) ∈ ℕ0)) |
17 | 16 | notbid 318 | . . . 4 ⊢ (𝐹 = 0 → (¬ (𝐷‘𝐹) ∈ ℕ0 ↔ ¬ (𝐷‘ 0 ) ∈ ℕ0)) |
18 | 14, 17 | syl5ibrcom 247 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐹 = 0 → ¬ (𝐷‘𝐹) ∈ ℕ0)) |
19 | 18 | necon2ad 2955 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → ((𝐷‘𝐹) ∈ ℕ0 → 𝐹 ≠ 0 )) |
20 | 6, 19 | impbid 211 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐹 ≠ 0 ↔ (𝐷‘𝐹) ∈ ℕ0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2940 ‘cfv 6500 ℝcr 11058 -∞cmnf 11195 ℕ0cn0 12421 Basecbs 17091 0gc0g 17329 Ringcrg 19972 Poly1cpl1 21571 deg1 cdg1 25439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 ax-addf 11138 ax-mulf 11139 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-tp 4595 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-se 5593 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-of 7621 df-om 7807 df-1st 7925 df-2nd 7926 df-supp 8097 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-er 8654 df-map 8773 df-ixp 8842 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-fsupp 9312 df-sup 9386 df-oi 9454 df-card 9883 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-2 12224 df-3 12225 df-4 12226 df-5 12227 df-6 12228 df-7 12229 df-8 12230 df-9 12231 df-n0 12422 df-z 12508 df-dec 12627 df-uz 12772 df-fz 13434 df-fzo 13577 df-seq 13916 df-hash 14240 df-struct 17027 df-sets 17044 df-slot 17062 df-ndx 17074 df-base 17092 df-ress 17121 df-plusg 17154 df-mulr 17155 df-starv 17156 df-sca 17157 df-vsca 17158 df-ip 17159 df-tset 17160 df-ple 17161 df-ds 17163 df-unif 17164 df-hom 17165 df-cco 17166 df-0g 17331 df-gsum 17332 df-prds 17337 df-pws 17339 df-mgm 18505 df-sgrp 18554 df-mnd 18565 df-submnd 18610 df-grp 18759 df-minusg 18760 df-subg 18933 df-cntz 19105 df-cmn 19572 df-abl 19573 df-mgp 19905 df-ur 19922 df-ring 19974 df-cring 19975 df-cnfld 20820 df-psr 21334 df-mpl 21336 df-opsr 21338 df-psr1 21574 df-ply1 21576 df-mdeg 25440 df-deg1 25441 |
This theorem is referenced by: deg1ldgn 25481 ply1domn 25511 uc1pmon1p 25539 ply1remlem 25550 fta1glem1 25553 fta1g 25555 lgsqrlem4 26720 idomrootle 41569 mon1psubm 41580 |
Copyright terms: Public domain | W3C validator |