![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1nn0clb | Structured version Visualization version GIF version |
Description: A polynomial is nonzero iff it has definite degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
deg1z.d | ⊢ 𝐷 = (deg1‘𝑅) |
deg1z.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1z.z | ⊢ 0 = (0g‘𝑃) |
deg1nn0cl.b | ⊢ 𝐵 = (Base‘𝑃) |
Ref | Expression |
---|---|
deg1nn0clb | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐹 ≠ 0 ↔ (𝐷‘𝐹) ∈ ℕ0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1z.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
2 | deg1z.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | deg1z.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
4 | deg1nn0cl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
5 | 1, 2, 3, 4 | deg1nn0cl 26112 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) |
6 | 5 | 3expia 1118 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐹 ≠ 0 → (𝐷‘𝐹) ∈ ℕ0)) |
7 | mnfnre 11298 | . . . . . . 7 ⊢ -∞ ∉ ℝ | |
8 | 7 | neli 3038 | . . . . . 6 ⊢ ¬ -∞ ∈ ℝ |
9 | nn0re 12527 | . . . . . 6 ⊢ (-∞ ∈ ℕ0 → -∞ ∈ ℝ) | |
10 | 8, 9 | mto 196 | . . . . 5 ⊢ ¬ -∞ ∈ ℕ0 |
11 | 1, 2, 3 | deg1z 26111 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝐷‘ 0 ) = -∞) |
12 | 11 | adantr 479 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐷‘ 0 ) = -∞) |
13 | 12 | eleq1d 2811 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → ((𝐷‘ 0 ) ∈ ℕ0 ↔ -∞ ∈ ℕ0)) |
14 | 10, 13 | mtbiri 326 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → ¬ (𝐷‘ 0 ) ∈ ℕ0) |
15 | fveq2 6893 | . . . . . 6 ⊢ (𝐹 = 0 → (𝐷‘𝐹) = (𝐷‘ 0 )) | |
16 | 15 | eleq1d 2811 | . . . . 5 ⊢ (𝐹 = 0 → ((𝐷‘𝐹) ∈ ℕ0 ↔ (𝐷‘ 0 ) ∈ ℕ0)) |
17 | 16 | notbid 317 | . . . 4 ⊢ (𝐹 = 0 → (¬ (𝐷‘𝐹) ∈ ℕ0 ↔ ¬ (𝐷‘ 0 ) ∈ ℕ0)) |
18 | 14, 17 | syl5ibrcom 246 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐹 = 0 → ¬ (𝐷‘𝐹) ∈ ℕ0)) |
19 | 18 | necon2ad 2945 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → ((𝐷‘𝐹) ∈ ℕ0 → 𝐹 ≠ 0 )) |
20 | 6, 19 | impbid 211 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐹 ≠ 0 ↔ (𝐷‘𝐹) ∈ ℕ0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ‘cfv 6546 ℝcr 11148 -∞cmnf 11287 ℕ0cn0 12518 Basecbs 17208 0gc0g 17449 Ringcrg 20212 Poly1cpl1 22162 deg1cdg1 26075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-addf 11228 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-isom 6555 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8726 df-map 8849 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9399 df-sup 9478 df-oi 9546 df-card 9975 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-n0 12519 df-z 12605 df-dec 12724 df-uz 12869 df-fz 13533 df-fzo 13676 df-seq 14016 df-hash 14343 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-starv 17276 df-sca 17277 df-vsca 17278 df-ip 17279 df-tset 17280 df-ple 17281 df-ds 17283 df-unif 17284 df-hom 17285 df-cco 17286 df-0g 17451 df-gsum 17452 df-prds 17457 df-pws 17459 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-submnd 18769 df-grp 18926 df-minusg 18927 df-subg 19113 df-cntz 19307 df-cmn 19776 df-abl 19777 df-mgp 20114 df-ur 20161 df-ring 20214 df-cring 20215 df-cnfld 21340 df-psr 21902 df-mpl 21904 df-opsr 21906 df-psr1 22165 df-ply1 22167 df-mdeg 26076 df-deg1 26077 |
This theorem is referenced by: deg1ldgn 26117 ply1domn 26148 uc1pmon1p 26176 ply1remlem 26189 fta1glem1 26192 fta1g 26194 idomrootle 26197 lgsqrlem4 27375 ply1dg1rt 33457 ply1dg3rt0irred 33460 aks6d1c2lem4 41839 aks6d1c5lem3 41849 aks6d1c6lem1 41882 aks6d1c6lem3 41884 mon1psubm 42901 |
Copyright terms: Public domain | W3C validator |