![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashclb | Structured version Visualization version GIF version |
Description: Reverse closure of the ♯ function. (Contributed by Mario Carneiro, 15-Jan-2015.) |
Ref | Expression |
---|---|
hashclb | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ (♯‘𝐴) ∈ ℕ0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashcl 14355 | . 2 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
2 | nn0re 12519 | . . 3 ⊢ ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℝ) | |
3 | pnfnre 11293 | . . . . . . 7 ⊢ +∞ ∉ ℝ | |
4 | 3 | neli 3045 | . . . . . 6 ⊢ ¬ +∞ ∈ ℝ |
5 | hashinf 14334 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) | |
6 | 5 | eleq1d 2814 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) ∈ ℝ ↔ +∞ ∈ ℝ)) |
7 | 4, 6 | mtbiri 326 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (♯‘𝐴) ∈ ℝ) |
8 | 7 | ex 411 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (¬ 𝐴 ∈ Fin → ¬ (♯‘𝐴) ∈ ℝ)) |
9 | 8 | con4d 115 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) ∈ ℝ → 𝐴 ∈ Fin)) |
10 | 2, 9 | syl5 34 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) ∈ ℕ0 → 𝐴 ∈ Fin)) |
11 | 1, 10 | impbid2 225 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ (♯‘𝐴) ∈ ℕ0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ‘cfv 6553 Fincfn 8970 ℝcr 11145 +∞cpnf 11283 ℕ0cn0 12510 ♯chash 14329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-n0 12511 df-z 12597 df-uz 12861 df-hash 14330 |
This theorem is referenced by: hashvnfin 14359 hashnfinnn0 14360 hashdifsnp1 14497 wrdnfi 14538 ramub1 17004 pgpfi1 19557 iscygodd 19850 prmcyg 19856 lt6abl 19857 ablfacrplem 20029 ablfacrp 20030 ablfacrp2 20031 znfi 21500 dchrfi 27208 dchrsum2 27221 isfusgrcl 29154 fusgrfis 29163 cusgrsize2inds 29287 finsumvtxdg2size 29384 esumcst 33715 aks6d1c2 41633 frlmpwfi 42553 idomsubgmo 42652 sge0rpcpnf 45838 |
Copyright terms: Public domain | W3C validator |