MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rgrx0ndm Structured version   Visualization version   GIF version

Theorem rgrx0ndm 27681
Description: 0 is not in the domain of the potentially alternative definition of the sets of k-regular graphs for each extended nonnegative integer k. (Contributed by AV, 28-Dec-2020.)
Hypothesis
Ref Expression
rgrx0ndm.u 𝑅 = (𝑘 ∈ ℕ0* ↦ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘})
Assertion
Ref Expression
rgrx0ndm 0 ∉ dom 𝑅
Distinct variable group:   𝑔,𝑘,𝑣
Allowed substitution hints:   𝑅(𝑣,𝑔,𝑘)

Proof of Theorem rgrx0ndm
StepHypRef Expression
1 rgrprcx 27680 . . . 4 {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V
21neli 3048 . . 3 ¬ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∈ V
32intnan 490 . 2 ¬ (0 ∈ ℕ0* ∧ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∈ V)
4 df-nel 3047 . . 3 (0 ∉ dom 𝑅 ↔ ¬ 0 ∈ dom 𝑅)
5 eqeq2 2749 . . . . . . 7 (𝑘 = 0 → (((VtxDeg‘𝑔)‘𝑣) = 𝑘 ↔ ((VtxDeg‘𝑔)‘𝑣) = 0))
65ralbidv 3118 . . . . . 6 (𝑘 = 0 → (∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘 ↔ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))
76abbidv 2807 . . . . 5 (𝑘 = 0 → {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘} = {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0})
87eleq1d 2822 . . . 4 (𝑘 = 0 → ({𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘} ∈ V ↔ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∈ V))
9 rgrx0ndm.u . . . . 5 𝑅 = (𝑘 ∈ ℕ0* ↦ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘})
109dmmpt 6103 . . . 4 dom 𝑅 = {𝑘 ∈ ℕ0* ∣ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘} ∈ V}
118, 10elrab2 3605 . . 3 (0 ∈ dom 𝑅 ↔ (0 ∈ ℕ0* ∧ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∈ V))
124, 11xchbinx 337 . 2 (0 ∉ dom 𝑅 ↔ ¬ (0 ∈ ℕ0* ∧ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∈ V))
133, 12mpbir 234 1 0 ∉ dom 𝑅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 399   = wceq 1543  wcel 2110  {cab 2714  wnel 3046  wral 3061  Vcvv 3408  cmpt 5135  dom cdm 5551  cfv 6380  0cc0 10729  0*cxnn0 12162  Vtxcvtx 27087  VtxDegcvtxdg 27553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-n0 12091  df-xnn0 12163  df-z 12177  df-uz 12439  df-xadd 12705  df-fz 13096  df-hash 13897  df-iedg 27090  df-edg 27139  df-uhgr 27149  df-upgr 27173  df-uspgr 27241  df-usgr 27242  df-vtxdg 27554  df-rgr 27645  df-rusgr 27646
This theorem is referenced by:  rgrx0nd  27682
  Copyright terms: Public domain W3C validator