MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rgrx0ndm Structured version   Visualization version   GIF version

Theorem rgrx0ndm 29611
Description: 0 is not in the domain of the potentially alternative definition of the sets of k-regular graphs for each extended nonnegative integer k. (Contributed by AV, 28-Dec-2020.)
Hypothesis
Ref Expression
rgrx0ndm.u 𝑅 = (𝑘 ∈ ℕ0* ↦ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘})
Assertion
Ref Expression
rgrx0ndm 0 ∉ dom 𝑅
Distinct variable group:   𝑔,𝑘,𝑣
Allowed substitution hints:   𝑅(𝑣,𝑔,𝑘)

Proof of Theorem rgrx0ndm
StepHypRef Expression
1 rgrprcx 29610 . . . 4 {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V
21neli 3048 . . 3 ¬ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∈ V
32intnan 486 . 2 ¬ (0 ∈ ℕ0* ∧ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∈ V)
4 df-nel 3047 . . 3 (0 ∉ dom 𝑅 ↔ ¬ 0 ∈ dom 𝑅)
5 eqeq2 2749 . . . . . . 7 (𝑘 = 0 → (((VtxDeg‘𝑔)‘𝑣) = 𝑘 ↔ ((VtxDeg‘𝑔)‘𝑣) = 0))
65ralbidv 3178 . . . . . 6 (𝑘 = 0 → (∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘 ↔ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))
76abbidv 2808 . . . . 5 (𝑘 = 0 → {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘} = {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0})
87eleq1d 2826 . . . 4 (𝑘 = 0 → ({𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘} ∈ V ↔ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∈ V))
9 rgrx0ndm.u . . . . 5 𝑅 = (𝑘 ∈ ℕ0* ↦ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘})
109dmmpt 6260 . . . 4 dom 𝑅 = {𝑘 ∈ ℕ0* ∣ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘} ∈ V}
118, 10elrab2 3695 . . 3 (0 ∈ dom 𝑅 ↔ (0 ∈ ℕ0* ∧ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∈ V))
124, 11xchbinx 334 . 2 (0 ∉ dom 𝑅 ↔ ¬ (0 ∈ ℕ0* ∧ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∈ V))
133, 12mpbir 231 1 0 ∉ dom 𝑅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2108  {cab 2714  wnel 3046  wral 3061  Vcvv 3480  cmpt 5225  dom cdm 5685  cfv 6561  0cc0 11155  0*cxnn0 12599  Vtxcvtx 29013  VtxDegcvtxdg 29483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-xadd 13155  df-fz 13548  df-hash 14370  df-iedg 29016  df-edg 29065  df-uhgr 29075  df-upgr 29099  df-uspgr 29167  df-usgr 29168  df-vtxdg 29484  df-rgr 29575  df-rusgr 29576
This theorem is referenced by:  rgrx0nd  29612
  Copyright terms: Public domain W3C validator