![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rgrx0ndm | Structured version Visualization version GIF version |
Description: 0 is not in the domain of the potentially alternative definition of the sets of k-regular graphs for each extended nonnegative integer k. (Contributed by AV, 28-Dec-2020.) |
Ref | Expression |
---|---|
rgrx0ndm.u | ⊢ 𝑅 = (𝑘 ∈ ℕ0* ↦ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘}) |
Ref | Expression |
---|---|
rgrx0ndm | ⊢ 0 ∉ dom 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgrprcx 27062 | . . . 4 ⊢ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V | |
2 | 1 | neli 3092 | . . 3 ⊢ ¬ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∈ V |
3 | 2 | intnan 487 | . 2 ⊢ ¬ (0 ∈ ℕ0* ∧ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∈ V) |
4 | df-nel 3091 | . . 3 ⊢ (0 ∉ dom 𝑅 ↔ ¬ 0 ∈ dom 𝑅) | |
5 | eqeq2 2806 | . . . . . . 7 ⊢ (𝑘 = 0 → (((VtxDeg‘𝑔)‘𝑣) = 𝑘 ↔ ((VtxDeg‘𝑔)‘𝑣) = 0)) | |
6 | 5 | ralbidv 3164 | . . . . . 6 ⊢ (𝑘 = 0 → (∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘 ↔ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)) |
7 | 6 | abbidv 2860 | . . . . 5 ⊢ (𝑘 = 0 → {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘} = {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0}) |
8 | 7 | eleq1d 2867 | . . . 4 ⊢ (𝑘 = 0 → ({𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘} ∈ V ↔ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∈ V)) |
9 | rgrx0ndm.u | . . . . 5 ⊢ 𝑅 = (𝑘 ∈ ℕ0* ↦ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘}) | |
10 | 9 | dmmpt 5974 | . . . 4 ⊢ dom 𝑅 = {𝑘 ∈ ℕ0* ∣ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘} ∈ V} |
11 | 8, 10 | elrab2 3622 | . . 3 ⊢ (0 ∈ dom 𝑅 ↔ (0 ∈ ℕ0* ∧ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∈ V)) |
12 | 4, 11 | xchbinx 335 | . 2 ⊢ (0 ∉ dom 𝑅 ↔ ¬ (0 ∈ ℕ0* ∧ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∈ V)) |
13 | 3, 12 | mpbir 232 | 1 ⊢ 0 ∉ dom 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1522 ∈ wcel 2081 {cab 2775 ∉ wnel 3090 ∀wral 3105 Vcvv 3437 ↦ cmpt 5045 dom cdm 5448 ‘cfv 6230 0cc0 10388 ℕ0*cxnn0 11820 Vtxcvtx 26469 VtxDegcvtxdg 26935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5086 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-cnex 10444 ax-resscn 10445 ax-1cn 10446 ax-icn 10447 ax-addcl 10448 ax-addrcl 10449 ax-mulcl 10450 ax-mulrcl 10451 ax-mulcom 10452 ax-addass 10453 ax-mulass 10454 ax-distr 10455 ax-i2m1 10456 ax-1ne0 10457 ax-1rid 10458 ax-rnegex 10459 ax-rrecex 10460 ax-cnre 10461 ax-pre-lttri 10462 ax-pre-lttrn 10463 ax-pre-ltadd 10464 ax-pre-mulgt0 10465 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-int 4787 df-iun 4831 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-pred 6028 df-ord 6074 df-on 6075 df-lim 6076 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-riota 6982 df-ov 7024 df-oprab 7025 df-mpo 7026 df-om 7442 df-1st 7550 df-2nd 7551 df-wrecs 7803 df-recs 7865 df-rdg 7903 df-1o 7958 df-er 8144 df-en 8363 df-dom 8364 df-sdom 8365 df-fin 8366 df-card 9219 df-pnf 10528 df-mnf 10529 df-xr 10530 df-ltxr 10531 df-le 10532 df-sub 10724 df-neg 10725 df-nn 11492 df-2 11553 df-n0 11751 df-xnn0 11821 df-z 11835 df-uz 12099 df-xadd 12363 df-fz 12748 df-hash 13546 df-iedg 26472 df-edg 26521 df-uhgr 26531 df-upgr 26555 df-uspgr 26623 df-usgr 26624 df-vtxdg 26936 df-rgr 27027 df-rusgr 27028 |
This theorem is referenced by: rgrx0nd 27064 |
Copyright terms: Public domain | W3C validator |