Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rgrx0ndm | Structured version Visualization version GIF version |
Description: 0 is not in the domain of the potentially alternative definition of the sets of k-regular graphs for each extended nonnegative integer k. (Contributed by AV, 28-Dec-2020.) |
Ref | Expression |
---|---|
rgrx0ndm.u | ⊢ 𝑅 = (𝑘 ∈ ℕ0* ↦ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘}) |
Ref | Expression |
---|---|
rgrx0ndm | ⊢ 0 ∉ dom 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgrprcx 28004 | . . . 4 ⊢ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V | |
2 | 1 | neli 3049 | . . 3 ⊢ ¬ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∈ V |
3 | 2 | intnan 488 | . 2 ⊢ ¬ (0 ∈ ℕ0* ∧ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∈ V) |
4 | df-nel 3048 | . . 3 ⊢ (0 ∉ dom 𝑅 ↔ ¬ 0 ∈ dom 𝑅) | |
5 | eqeq2 2748 | . . . . . . 7 ⊢ (𝑘 = 0 → (((VtxDeg‘𝑔)‘𝑣) = 𝑘 ↔ ((VtxDeg‘𝑔)‘𝑣) = 0)) | |
6 | 5 | ralbidv 3171 | . . . . . 6 ⊢ (𝑘 = 0 → (∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘 ↔ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)) |
7 | 6 | abbidv 2805 | . . . . 5 ⊢ (𝑘 = 0 → {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘} = {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0}) |
8 | 7 | eleq1d 2821 | . . . 4 ⊢ (𝑘 = 0 → ({𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘} ∈ V ↔ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∈ V)) |
9 | rgrx0ndm.u | . . . . 5 ⊢ 𝑅 = (𝑘 ∈ ℕ0* ↦ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘}) | |
10 | 9 | dmmpt 6158 | . . . 4 ⊢ dom 𝑅 = {𝑘 ∈ ℕ0* ∣ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘} ∈ V} |
11 | 8, 10 | elrab2 3632 | . . 3 ⊢ (0 ∈ dom 𝑅 ↔ (0 ∈ ℕ0* ∧ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∈ V)) |
12 | 4, 11 | xchbinx 334 | . 2 ⊢ (0 ∉ dom 𝑅 ↔ ¬ (0 ∈ ℕ0* ∧ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∈ V)) |
13 | 3, 12 | mpbir 230 | 1 ⊢ 0 ∉ dom 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 = wceq 1539 ∈ wcel 2104 {cab 2713 ∉ wnel 3047 ∀wral 3062 Vcvv 3437 ↦ cmpt 5164 dom cdm 5600 ‘cfv 6458 0cc0 10917 ℕ0*cxnn0 12351 Vtxcvtx 27411 VtxDegcvtxdg 27877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-n0 12280 df-xnn0 12352 df-z 12366 df-uz 12629 df-xadd 12895 df-fz 13286 df-hash 14091 df-iedg 27414 df-edg 27463 df-uhgr 27473 df-upgr 27497 df-uspgr 27565 df-usgr 27566 df-vtxdg 27878 df-rgr 27969 df-rusgr 27970 |
This theorem is referenced by: rgrx0nd 28006 |
Copyright terms: Public domain | W3C validator |