MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  egt2lt3 Structured version   Visualization version   GIF version

Theorem egt2lt3 16150
Description: Euler's constant e = 2.71828... is strictly bounded below by 2 and above by 3. (Contributed by NM, 28-Nov-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Assertion
Ref Expression
egt2lt3 (2 < e ∧ e < 3)

Proof of Theorem egt2lt3
StepHypRef Expression
1 eqid 2729 . . . . 5 (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛))) = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛)))
2 eqid 2729 . . . . 5 (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
31, 2ege2le3 16032 . . . 4 (2 ≤ e ∧ e ≤ 3)
43simpli 483 . . 3 2 ≤ e
5 eirr 16149 . . . . . 6 e ∉ ℚ
65neli 3031 . . . . 5 ¬ e ∈ ℚ
7 nnq 12897 . . . . 5 (e ∈ ℕ → e ∈ ℚ)
86, 7mto 197 . . . 4 ¬ e ∈ ℕ
9 2nn 12235 . . . . . 6 2 ∈ ℕ
10 eleq1 2816 . . . . . 6 (e = 2 → (e ∈ ℕ ↔ 2 ∈ ℕ))
119, 10mpbiri 258 . . . . 5 (e = 2 → e ∈ ℕ)
1211necon3bi 2951 . . . 4 (¬ e ∈ ℕ → e ≠ 2)
138, 12ax-mp 5 . . 3 e ≠ 2
14 2re 12236 . . . 4 2 ∈ ℝ
15 ere 16031 . . . 4 e ∈ ℝ
1614, 15ltleni 11268 . . 3 (2 < e ↔ (2 ≤ e ∧ e ≠ 2))
174, 13, 16mpbir2an 711 . 2 2 < e
183simpri 485 . . 3 e ≤ 3
19 3nn 12241 . . . . . 6 3 ∈ ℕ
20 eleq1 2816 . . . . . 6 (3 = e → (3 ∈ ℕ ↔ e ∈ ℕ))
2119, 20mpbii 233 . . . . 5 (3 = e → e ∈ ℕ)
2221necon3bi 2951 . . . 4 (¬ e ∈ ℕ → 3 ≠ e)
238, 22ax-mp 5 . . 3 3 ≠ e
24 3re 12242 . . . 4 3 ∈ ℝ
2515, 24ltleni 11268 . . 3 (e < 3 ↔ (e ≤ 3 ∧ 3 ≠ e))
2618, 23, 25mpbir2an 711 . 2 e < 3
2717, 26pm3.2i 470 1 (2 < e ∧ e < 3)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  1c1 11045   · cmul 11049   < clt 11184  cle 11185   / cdiv 11811  cn 12162  2c2 12217  3c3 12218  0cn0 12418  cq 12883  cexp 14002  !cfa 14214  eceu 16004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-ico 13288  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-e 16010
This theorem is referenced by:  epos  16151  ene1  16154  cxploglim2  26922  harmonicbnd3  26951  bposlem7  27234  bposlem9  27236  chebbnd1lem2  27414  chebbnd1lem3  27415  chebbnd1  27416  dchrvmasumlema  27444  mulog2sumlem2  27479  pntpbnd1a  27529  pntpbnd2  27531  pntlemb  27541  pntlemk  27550  hgt750lem  34635  subfacval3  35169  aks4d1p1p7  42055  etransclem23  46248
  Copyright terms: Public domain W3C validator