![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > egt2lt3 | Structured version Visualization version GIF version |
Description: Euler's constant e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 28-Nov-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
Ref | Expression |
---|---|
egt2lt3 | ⊢ (2 < e ∧ e < 3) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2799 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛))) = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛))) | |
2 | eqid 2799 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) | |
3 | 1, 2 | ege2le3 15156 | . . . 4 ⊢ (2 ≤ e ∧ e ≤ 3) |
4 | 3 | simpli 477 | . . 3 ⊢ 2 ≤ e |
5 | eirr 15269 | . . . . . 6 ⊢ e ∉ ℚ | |
6 | 5 | neli 3076 | . . . . 5 ⊢ ¬ e ∈ ℚ |
7 | nnq 12046 | . . . . 5 ⊢ (e ∈ ℕ → e ∈ ℚ) | |
8 | 6, 7 | mto 189 | . . . 4 ⊢ ¬ e ∈ ℕ |
9 | 2nn 11386 | . . . . . 6 ⊢ 2 ∈ ℕ | |
10 | eleq1 2866 | . . . . . 6 ⊢ (e = 2 → (e ∈ ℕ ↔ 2 ∈ ℕ)) | |
11 | 9, 10 | mpbiri 250 | . . . . 5 ⊢ (e = 2 → e ∈ ℕ) |
12 | 11 | necon3bi 2997 | . . . 4 ⊢ (¬ e ∈ ℕ → e ≠ 2) |
13 | 8, 12 | ax-mp 5 | . . 3 ⊢ e ≠ 2 |
14 | 2re 11387 | . . . 4 ⊢ 2 ∈ ℝ | |
15 | ere 15155 | . . . 4 ⊢ e ∈ ℝ | |
16 | 14, 15 | ltleni 10445 | . . 3 ⊢ (2 < e ↔ (2 ≤ e ∧ e ≠ 2)) |
17 | 4, 13, 16 | mpbir2an 703 | . 2 ⊢ 2 < e |
18 | 3 | simpri 480 | . . 3 ⊢ e ≤ 3 |
19 | 3nn 11392 | . . . . . 6 ⊢ 3 ∈ ℕ | |
20 | eleq1 2866 | . . . . . 6 ⊢ (3 = e → (3 ∈ ℕ ↔ e ∈ ℕ)) | |
21 | 19, 20 | mpbii 225 | . . . . 5 ⊢ (3 = e → e ∈ ℕ) |
22 | 21 | necon3bi 2997 | . . . 4 ⊢ (¬ e ∈ ℕ → 3 ≠ e) |
23 | 8, 22 | ax-mp 5 | . . 3 ⊢ 3 ≠ e |
24 | 3re 11393 | . . . 4 ⊢ 3 ∈ ℝ | |
25 | 15, 24 | ltleni 10445 | . . 3 ⊢ (e < 3 ↔ (e ≤ 3 ∧ 3 ≠ e)) |
26 | 18, 23, 25 | mpbir2an 703 | . 2 ⊢ e < 3 |
27 | 17, 26 | pm3.2i 463 | 1 ⊢ (2 < e ∧ e < 3) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 class class class wbr 4843 ↦ cmpt 4922 ‘cfv 6101 (class class class)co 6878 1c1 10225 · cmul 10229 < clt 10363 ≤ cle 10364 / cdiv 10976 ℕcn 11312 2c2 11368 3c3 11369 ℕ0cn0 11580 ℚcq 12033 ↑cexp 13114 !cfa 13313 eceu 15129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 ax-addf 10303 ax-mulf 10304 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-pm 8098 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-sup 8590 df-inf 8591 df-oi 8657 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-n0 11581 df-z 11667 df-uz 11931 df-q 12034 df-rp 12075 df-ico 12430 df-fz 12581 df-fzo 12721 df-fl 12848 df-seq 13056 df-exp 13115 df-fac 13314 df-bc 13343 df-hash 13371 df-shft 14148 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-limsup 14543 df-clim 14560 df-rlim 14561 df-sum 14758 df-ef 15134 df-e 15135 |
This theorem is referenced by: epos 15271 ene1 15274 logblog 24874 cxploglim2 25057 emgt0 25085 harmonicbnd3 25086 bposlem7 25367 bposlem9 25369 chebbnd1lem2 25511 chebbnd1lem3 25512 chebbnd1 25513 dchrvmasumlema 25541 mulog2sumlem2 25576 pntpbnd1a 25626 pntpbnd2 25628 pntlemb 25638 pntlemk 25647 hgt750lem 31249 subfacval3 31688 etransclem23 41217 |
Copyright terms: Public domain | W3C validator |