| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > egt2lt3 | Structured version Visualization version GIF version | ||
| Description: Euler's constant e = 2.71828... is strictly bounded below by 2 and above by 3. (Contributed by NM, 28-Nov-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| Ref | Expression |
|---|---|
| egt2lt3 | ⊢ (2 < e ∧ e < 3) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛))) = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛))) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) | |
| 3 | 1, 2 | ege2le3 15997 | . . . 4 ⊢ (2 ≤ e ∧ e ≤ 3) |
| 4 | 3 | simpli 483 | . . 3 ⊢ 2 ≤ e |
| 5 | eirr 16114 | . . . . . 6 ⊢ e ∉ ℚ | |
| 6 | 5 | neli 3034 | . . . . 5 ⊢ ¬ e ∈ ℚ |
| 7 | nnq 12860 | . . . . 5 ⊢ (e ∈ ℕ → e ∈ ℚ) | |
| 8 | 6, 7 | mto 197 | . . . 4 ⊢ ¬ e ∈ ℕ |
| 9 | 2nn 12198 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 10 | eleq1 2819 | . . . . . 6 ⊢ (e = 2 → (e ∈ ℕ ↔ 2 ∈ ℕ)) | |
| 11 | 9, 10 | mpbiri 258 | . . . . 5 ⊢ (e = 2 → e ∈ ℕ) |
| 12 | 11 | necon3bi 2954 | . . . 4 ⊢ (¬ e ∈ ℕ → e ≠ 2) |
| 13 | 8, 12 | ax-mp 5 | . . 3 ⊢ e ≠ 2 |
| 14 | 2re 12199 | . . . 4 ⊢ 2 ∈ ℝ | |
| 15 | ere 15996 | . . . 4 ⊢ e ∈ ℝ | |
| 16 | 14, 15 | ltleni 11231 | . . 3 ⊢ (2 < e ↔ (2 ≤ e ∧ e ≠ 2)) |
| 17 | 4, 13, 16 | mpbir2an 711 | . 2 ⊢ 2 < e |
| 18 | 3 | simpri 485 | . . 3 ⊢ e ≤ 3 |
| 19 | 3nn 12204 | . . . . . 6 ⊢ 3 ∈ ℕ | |
| 20 | eleq1 2819 | . . . . . 6 ⊢ (3 = e → (3 ∈ ℕ ↔ e ∈ ℕ)) | |
| 21 | 19, 20 | mpbii 233 | . . . . 5 ⊢ (3 = e → e ∈ ℕ) |
| 22 | 21 | necon3bi 2954 | . . . 4 ⊢ (¬ e ∈ ℕ → 3 ≠ e) |
| 23 | 8, 22 | ax-mp 5 | . . 3 ⊢ 3 ≠ e |
| 24 | 3re 12205 | . . . 4 ⊢ 3 ∈ ℝ | |
| 25 | 15, 24 | ltleni 11231 | . . 3 ⊢ (e < 3 ↔ (e ≤ 3 ∧ 3 ≠ e)) |
| 26 | 18, 23, 25 | mpbir2an 711 | . 2 ⊢ e < 3 |
| 27 | 17, 26 | pm3.2i 470 | 1 ⊢ (2 < e ∧ e < 3) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 1c1 11007 · cmul 11011 < clt 11146 ≤ cle 11147 / cdiv 11774 ℕcn 12125 2c2 12180 3c3 12181 ℕ0cn0 12381 ℚcq 12846 ↑cexp 13968 !cfa 14180 eceu 15969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-ico 13251 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-e 15975 |
| This theorem is referenced by: epos 16116 ene1 16119 cxploglim2 26916 harmonicbnd3 26945 bposlem7 27228 bposlem9 27230 chebbnd1lem2 27408 chebbnd1lem3 27409 chebbnd1 27410 dchrvmasumlema 27438 mulog2sumlem2 27473 pntpbnd1a 27523 pntpbnd2 27525 pntlemb 27535 pntlemk 27544 hgt750lem 34664 subfacval3 35233 aks4d1p1p7 42115 etransclem23 46303 |
| Copyright terms: Public domain | W3C validator |