| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ramtcl2 | Structured version Visualization version GIF version | ||
| Description: The Ramsey number is an integer iff there is a number with the Ramsey number property. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
| Ref | Expression |
|---|---|
| ramval.c | ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
| ramval.t | ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} |
| Ref | Expression |
|---|---|
| ramtcl2 | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ 𝑇 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ramval.c | . . . . 5 ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) | |
| 2 | ramval.t | . . . . 5 ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} | |
| 3 | 1, 2 | ramcl2lem 16918 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < ))) |
| 4 | 3 | eleq1d 2816 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) ∈ ℕ0)) |
| 5 | pnfnre 11150 | . . . . . 6 ⊢ +∞ ∉ ℝ | |
| 6 | 5 | neli 3034 | . . . . 5 ⊢ ¬ +∞ ∈ ℝ |
| 7 | iftrue 4481 | . . . . . . 7 ⊢ (𝑇 = ∅ → if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) = +∞) | |
| 8 | 7 | eleq1d 2816 | . . . . . 6 ⊢ (𝑇 = ∅ → (if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) ∈ ℕ0 ↔ +∞ ∈ ℕ0)) |
| 9 | nn0re 12387 | . . . . . 6 ⊢ (+∞ ∈ ℕ0 → +∞ ∈ ℝ) | |
| 10 | 8, 9 | biimtrdi 253 | . . . . 5 ⊢ (𝑇 = ∅ → (if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) ∈ ℕ0 → +∞ ∈ ℝ)) |
| 11 | 6, 10 | mtoi 199 | . . . 4 ⊢ (𝑇 = ∅ → ¬ if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) ∈ ℕ0) |
| 12 | 11 | necon2ai 2957 | . . 3 ⊢ (if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) ∈ ℕ0 → 𝑇 ≠ ∅) |
| 13 | 4, 12 | biimtrdi 253 | . 2 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 → 𝑇 ≠ ∅)) |
| 14 | 1, 2 | ramtcl 16919 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ 𝑇 ↔ 𝑇 ≠ ∅)) |
| 15 | 2 | ssrab3 4032 | . . . 4 ⊢ 𝑇 ⊆ ℕ0 |
| 16 | 15 | sseli 3930 | . . 3 ⊢ ((𝑀 Ramsey 𝐹) ∈ 𝑇 → (𝑀 Ramsey 𝐹) ∈ ℕ0) |
| 17 | 14, 16 | biimtrrdi 254 | . 2 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑇 ≠ ∅ → (𝑀 Ramsey 𝐹) ∈ ℕ0)) |
| 18 | 13, 17 | impbid 212 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ 𝑇 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1539 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 {crab 3395 Vcvv 3436 ⊆ wss 3902 ∅c0 4283 ifcif 4475 𝒫 cpw 4550 {csn 4576 class class class wbr 5091 ◡ccnv 5615 “ cima 5619 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ↑m cmap 8750 infcinf 9325 ℝcr 11002 +∞cpnf 11140 < clt 11143 ≤ cle 11144 ℕ0cn0 12378 ♯chash 14234 Ramsey cram 16908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-ram 16910 |
| This theorem is referenced by: rami 16924 ramcl2 16925 ramsey 16939 |
| Copyright terms: Public domain | W3C validator |