![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ramtcl2 | Structured version Visualization version GIF version |
Description: The Ramsey number is an integer iff there is a number with the Ramsey number property. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
Ref | Expression |
---|---|
ramval.c | ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
ramval.t | ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} |
Ref | Expression |
---|---|
ramtcl2 | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ 𝑇 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ramval.c | . . . . 5 ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) | |
2 | ramval.t | . . . . 5 ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} | |
3 | 1, 2 | ramcl2lem 17056 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < ))) |
4 | 3 | eleq1d 2829 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) ∈ ℕ0)) |
5 | pnfnre 11331 | . . . . . 6 ⊢ +∞ ∉ ℝ | |
6 | 5 | neli 3054 | . . . . 5 ⊢ ¬ +∞ ∈ ℝ |
7 | iftrue 4554 | . . . . . . 7 ⊢ (𝑇 = ∅ → if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) = +∞) | |
8 | 7 | eleq1d 2829 | . . . . . 6 ⊢ (𝑇 = ∅ → (if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) ∈ ℕ0 ↔ +∞ ∈ ℕ0)) |
9 | nn0re 12562 | . . . . . 6 ⊢ (+∞ ∈ ℕ0 → +∞ ∈ ℝ) | |
10 | 8, 9 | biimtrdi 253 | . . . . 5 ⊢ (𝑇 = ∅ → (if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) ∈ ℕ0 → +∞ ∈ ℝ)) |
11 | 6, 10 | mtoi 199 | . . . 4 ⊢ (𝑇 = ∅ → ¬ if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) ∈ ℕ0) |
12 | 11 | necon2ai 2976 | . . 3 ⊢ (if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) ∈ ℕ0 → 𝑇 ≠ ∅) |
13 | 4, 12 | biimtrdi 253 | . 2 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 → 𝑇 ≠ ∅)) |
14 | 1, 2 | ramtcl 17057 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ 𝑇 ↔ 𝑇 ≠ ∅)) |
15 | 2 | ssrab3 4105 | . . . 4 ⊢ 𝑇 ⊆ ℕ0 |
16 | 15 | sseli 4004 | . . 3 ⊢ ((𝑀 Ramsey 𝐹) ∈ 𝑇 → (𝑀 Ramsey 𝐹) ∈ ℕ0) |
17 | 14, 16 | biimtrrdi 254 | . 2 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑇 ≠ ∅ → (𝑀 Ramsey 𝐹) ∈ ℕ0)) |
18 | 13, 17 | impbid 212 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ 𝑇 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 {crab 3443 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 ifcif 4548 𝒫 cpw 4622 {csn 4648 class class class wbr 5166 ◡ccnv 5699 “ cima 5703 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ↑m cmap 8884 infcinf 9510 ℝcr 11183 +∞cpnf 11321 < clt 11324 ≤ cle 11325 ℕ0cn0 12553 ♯chash 14379 Ramsey cram 17046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-ram 17048 |
This theorem is referenced by: rami 17062 ramcl2 17063 ramsey 17077 |
Copyright terms: Public domain | W3C validator |