MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramtcl2 Structured version   Visualization version   GIF version

Theorem ramtcl2 17050
Description: The Ramsey number is an integer iff there is a number with the Ramsey number property. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
ramval.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
ramval.t 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))}
Assertion
Ref Expression
ramtcl2 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0𝑇 ≠ ∅))
Distinct variable groups:   𝑓,𝑐,𝑥,𝐶   𝑛,𝑐,𝑠,𝐹,𝑓,𝑥   𝑎,𝑏,𝑐,𝑓,𝑖,𝑛,𝑠,𝑥,𝑀   𝑅,𝑐,𝑓,𝑛,𝑠,𝑥   𝑉,𝑐,𝑓,𝑛,𝑠,𝑥
Allowed substitution hints:   𝐶(𝑖,𝑛,𝑠,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝑇(𝑥,𝑓,𝑖,𝑛,𝑠,𝑎,𝑏,𝑐)   𝐹(𝑖,𝑎,𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem ramtcl2
StepHypRef Expression
1 ramval.c . . . . 5 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
2 ramval.t . . . . 5 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅m (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))}
31, 2ramcl2lem 17048 . . . 4 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )))
43eleq1d 2825 . . 3 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) ∈ ℕ0))
5 pnfnre 11303 . . . . . 6 +∞ ∉ ℝ
65neli 3047 . . . . 5 ¬ +∞ ∈ ℝ
7 iftrue 4530 . . . . . . 7 (𝑇 = ∅ → if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) = +∞)
87eleq1d 2825 . . . . . 6 (𝑇 = ∅ → (if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) ∈ ℕ0 ↔ +∞ ∈ ℕ0))
9 nn0re 12537 . . . . . 6 (+∞ ∈ ℕ0 → +∞ ∈ ℝ)
108, 9biimtrdi 253 . . . . 5 (𝑇 = ∅ → (if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) ∈ ℕ0 → +∞ ∈ ℝ))
116, 10mtoi 199 . . . 4 (𝑇 = ∅ → ¬ if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) ∈ ℕ0)
1211necon2ai 2969 . . 3 (if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) ∈ ℕ0𝑇 ≠ ∅)
134, 12biimtrdi 253 . 2 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0𝑇 ≠ ∅))
141, 2ramtcl 17049 . . 3 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ 𝑇𝑇 ≠ ∅))
152ssrab3 4081 . . . 4 𝑇 ⊆ ℕ0
1615sseli 3978 . . 3 ((𝑀 Ramsey 𝐹) ∈ 𝑇 → (𝑀 Ramsey 𝐹) ∈ ℕ0)
1714, 16biimtrrdi 254 . 2 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑇 ≠ ∅ → (𝑀 Ramsey 𝐹) ∈ ℕ0))
1813, 17impbid 212 1 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0𝑇 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1537   = wceq 1539  wcel 2107  wne 2939  wral 3060  wrex 3069  {crab 3435  Vcvv 3479  wss 3950  c0 4332  ifcif 4524  𝒫 cpw 4599  {csn 4625   class class class wbr 5142  ccnv 5683  cima 5687  wf 6556  cfv 6560  (class class class)co 7432  cmpo 7434  m cmap 8867  infcinf 9482  cr 11155  +∞cpnf 11293   < clt 11296  cle 11297  0cn0 12528  chash 14370   Ramsey cram 17038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-ram 17040
This theorem is referenced by:  rami  17054  ramcl2  17055  ramsey  17069
  Copyright terms: Public domain W3C validator