![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nffo | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for an onto function. (Contributed by NM, 16-May-2004.) |
Ref | Expression |
---|---|
nffo.1 | ⊢ Ⅎ𝑥𝐹 |
nffo.2 | ⊢ Ⅎ𝑥𝐴 |
nffo.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nffo | ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fo 6143 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
2 | nffo.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | nffo.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nffn 6234 | . . 3 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
5 | 2 | nfrn 5616 | . . . 4 ⊢ Ⅎ𝑥ran 𝐹 |
6 | nffo.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
7 | 5, 6 | nfeq 2945 | . . 3 ⊢ Ⅎ𝑥ran 𝐹 = 𝐵 |
8 | 4, 7 | nfan 1946 | . 2 ⊢ Ⅎ𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
9 | 1, 8 | nfxfr 1897 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 386 = wceq 1601 Ⅎwnf 1827 Ⅎwnfc 2919 ran crn 5358 Fn wfn 6132 –onto→wfo 6135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4889 df-opab 4951 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-fun 6139 df-fn 6140 df-fo 6143 |
This theorem is referenced by: nff1o 6391 fompt 40312 |
Copyright terms: Public domain | W3C validator |