![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nffo | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for an onto function. (Contributed by NM, 16-May-2004.) |
Ref | Expression |
---|---|
nffo.1 | ⊢ Ⅎ𝑥𝐹 |
nffo.2 | ⊢ Ⅎ𝑥𝐴 |
nffo.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nffo | ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fo 6579 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
2 | nffo.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | nffo.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nffn 6678 | . . 3 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
5 | 2 | nfrn 5977 | . . . 4 ⊢ Ⅎ𝑥ran 𝐹 |
6 | nffo.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
7 | 5, 6 | nfeq 2922 | . . 3 ⊢ Ⅎ𝑥ran 𝐹 = 𝐵 |
8 | 4, 7 | nfan 1898 | . 2 ⊢ Ⅎ𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
9 | 1, 8 | nfxfr 1851 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 Ⅎwnf 1781 Ⅎwnfc 2893 ran crn 5701 Fn wfn 6568 –onto→wfo 6571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-fo 6579 |
This theorem is referenced by: nff1o 6860 fompt 7152 |
Copyright terms: Public domain | W3C validator |