| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nffo | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for an onto function. (Contributed by NM, 16-May-2004.) |
| Ref | Expression |
|---|---|
| nffo.1 | ⊢ Ⅎ𝑥𝐹 |
| nffo.2 | ⊢ Ⅎ𝑥𝐴 |
| nffo.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nffo | ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fo 6520 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 2 | nffo.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nffo.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | nffn 6620 | . . 3 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
| 5 | 2 | nfrn 5919 | . . . 4 ⊢ Ⅎ𝑥ran 𝐹 |
| 6 | nffo.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 7 | 5, 6 | nfeq 2906 | . . 3 ⊢ Ⅎ𝑥ran 𝐹 = 𝐵 |
| 8 | 4, 7 | nfan 1899 | . 2 ⊢ Ⅎ𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
| 9 | 1, 8 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 Ⅎwnf 1783 Ⅎwnfc 2877 ran crn 5642 Fn wfn 6509 –onto→wfo 6512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-fo 6520 |
| This theorem is referenced by: nff1o 6801 fompt 7093 |
| Copyright terms: Public domain | W3C validator |