| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nffo | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for an onto function. (Contributed by NM, 16-May-2004.) |
| Ref | Expression |
|---|---|
| nffo.1 | ⊢ Ⅎ𝑥𝐹 |
| nffo.2 | ⊢ Ⅎ𝑥𝐴 |
| nffo.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nffo | ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fo 6487 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 2 | nffo.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nffo.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | nffn 6580 | . . 3 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
| 5 | 2 | nfrn 5891 | . . . 4 ⊢ Ⅎ𝑥ran 𝐹 |
| 6 | nffo.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 7 | 5, 6 | nfeq 2908 | . . 3 ⊢ Ⅎ𝑥ran 𝐹 = 𝐵 |
| 8 | 4, 7 | nfan 1900 | . 2 ⊢ Ⅎ𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
| 9 | 1, 8 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 Ⅎwnf 1784 Ⅎwnfc 2879 ran crn 5615 Fn wfn 6476 –onto→wfo 6479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-fun 6483 df-fn 6484 df-fo 6487 |
| This theorem is referenced by: nff1o 6761 fompt 7051 |
| Copyright terms: Public domain | W3C validator |