Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nffo | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for an onto function. (Contributed by NM, 16-May-2004.) |
Ref | Expression |
---|---|
nffo.1 | ⊢ Ⅎ𝑥𝐹 |
nffo.2 | ⊢ Ⅎ𝑥𝐴 |
nffo.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nffo | ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fo 6424 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
2 | nffo.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | nffo.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nffn 6516 | . . 3 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
5 | 2 | nfrn 5850 | . . . 4 ⊢ Ⅎ𝑥ran 𝐹 |
6 | nffo.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
7 | 5, 6 | nfeq 2919 | . . 3 ⊢ Ⅎ𝑥ran 𝐹 = 𝐵 |
8 | 4, 7 | nfan 1903 | . 2 ⊢ Ⅎ𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
9 | 1, 8 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 Ⅎwnf 1787 Ⅎwnfc 2886 ran crn 5581 Fn wfn 6413 –onto→wfo 6416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-fo 6424 |
This theorem is referenced by: nff1o 6698 fompt 42619 |
Copyright terms: Public domain | W3C validator |