MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nffo Structured version   Visualization version   GIF version

Theorem nffo 6735
Description: Bound-variable hypothesis builder for an onto function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nffo.1 𝑥𝐹
nffo.2 𝑥𝐴
nffo.3 𝑥𝐵
Assertion
Ref Expression
nffo 𝑥 𝐹:𝐴onto𝐵

Proof of Theorem nffo
StepHypRef Expression
1 df-fo 6488 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
2 nffo.1 . . . 4 𝑥𝐹
3 nffo.2 . . . 4 𝑥𝐴
42, 3nffn 6581 . . 3 𝑥 𝐹 Fn 𝐴
52nfrn 5894 . . . 4 𝑥ran 𝐹
6 nffo.3 . . . 4 𝑥𝐵
75, 6nfeq 2905 . . 3 𝑥ran 𝐹 = 𝐵
84, 7nfan 1899 . 2 𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)
91, 8nfxfr 1853 1 𝑥 𝐹:𝐴onto𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wnf 1783  wnfc 2876  ran crn 5620   Fn wfn 6477  ontowfo 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-fun 6484  df-fn 6485  df-fo 6488
This theorem is referenced by:  nff1o  6762  fompt  7052
  Copyright terms: Public domain W3C validator