Proof of Theorem fompt
Step | Hyp | Ref
| Expression |
1 | | fompt.1 |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
2 | | nfmpt1 5182 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐶) |
3 | 1, 2 | nfcxfr 2905 |
. . . . . 6
⊢
Ⅎ𝑥𝐹 |
4 | 3 | dffo3f 42717 |
. . . . 5
⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
5 | 4 | simplbi 498 |
. . . 4
⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
6 | 1 | fmpt 6984 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
7 | 6 | bicomi 223 |
. . . . 5
⊢ (𝐹:𝐴⟶𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) |
8 | 7 | biimpi 215 |
. . . 4
⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) |
9 | 5, 8 | syl 17 |
. . 3
⊢ (𝐹:𝐴–onto→𝐵 → ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) |
10 | 3 | foelrnf 42724 |
. . . . 5
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
11 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐴 |
12 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐵 |
13 | 3, 11, 12 | nffo 6687 |
. . . . . . 7
⊢
Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
14 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (𝐹‘𝑥)) → 𝑦 = (𝐹‘𝑥)) |
15 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
16 | 9 | r19.21bi 3134 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
17 | 1 | fvmpt2 6886 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → (𝐹‘𝑥) = 𝐶) |
18 | 15, 16, 17 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) |
19 | 18 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (𝐹‘𝑥)) → (𝐹‘𝑥) = 𝐶) |
20 | 14, 19 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (𝐹‘𝑥)) → 𝑦 = 𝐶) |
21 | 20 | ex 413 |
. . . . . . . 8
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) → 𝑦 = 𝐶)) |
22 | 21 | ex 413 |
. . . . . . 7
⊢ (𝐹:𝐴–onto→𝐵 → (𝑥 ∈ 𝐴 → (𝑦 = (𝐹‘𝑥) → 𝑦 = 𝐶))) |
23 | 13, 22 | reximdai 3244 |
. . . . . 6
⊢ (𝐹:𝐴–onto→𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐶)) |
24 | 23 | adantr 481 |
. . . . 5
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐶)) |
25 | 10, 24 | mpd 15 |
. . . 4
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) |
26 | 25 | ralrimiva 3103 |
. . 3
⊢ (𝐹:𝐴–onto→𝐵 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) |
27 | 9, 26 | jca 512 |
. 2
⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶)) |
28 | 6 | biimpi 215 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 → 𝐹:𝐴⟶𝐵) |
29 | 28 | adantr 481 |
. . . 4
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) → 𝐹:𝐴⟶𝐵) |
30 | | nfv 1917 |
. . . . . 6
⊢
Ⅎ𝑦∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
31 | | nfra1 3144 |
. . . . . 6
⊢
Ⅎ𝑦∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶 |
32 | 30, 31 | nfan 1902 |
. . . . 5
⊢
Ⅎ𝑦(∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) |
33 | | simpll 764 |
. . . . . . 7
⊢
(((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) ∧ 𝑦 ∈ 𝐵) → ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) |
34 | | rspa 3132 |
. . . . . . . 8
⊢
((∀𝑦 ∈
𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) |
35 | 34 | adantll 711 |
. . . . . . 7
⊢
(((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) |
36 | | nfra1 3144 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
37 | | simp3 1137 |
. . . . . . . . . . 11
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → 𝑦 = 𝐶) |
38 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
39 | | rspa 3132 |
. . . . . . . . . . . . . 14
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
40 | 38, 39, 17 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) |
41 | 40 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝐶 = (𝐹‘𝑥)) |
42 | 41 | 3adant3 1131 |
. . . . . . . . . . 11
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → 𝐶 = (𝐹‘𝑥)) |
43 | 37, 42 | eqtrd 2778 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → 𝑦 = (𝐹‘𝑥)) |
44 | 43 | 3exp 1118 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝑦 = 𝐶 → 𝑦 = (𝐹‘𝑥)))) |
45 | 36, 44 | reximdai 3244 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐶 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
46 | 45 | imp 407 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
47 | 33, 35, 46 | syl2anc 584 |
. . . . . 6
⊢
(((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
48 | 47 | ex 413 |
. . . . 5
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) → (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
49 | 32, 48 | ralrimi 3141 |
. . . 4
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
50 | 29, 49 | jca 512 |
. . 3
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
51 | 50, 4 | sylibr 233 |
. 2
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) → 𝐹:𝐴–onto→𝐵) |
52 | 27, 51 | impbii 208 |
1
⊢ (𝐹:𝐴–onto→𝐵 ↔ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶)) |