Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fompt Structured version   Visualization version   GIF version

Theorem fompt 41806
Description: Express being onto for a mapping operation. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
fompt.1 𝐹 = (𝑥𝐴𝐶)
Assertion
Ref Expression
fompt (𝐹:𝐴onto𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐶   𝑦,𝐹
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem fompt
StepHypRef Expression
1 fompt.1 . . . . . . 7 𝐹 = (𝑥𝐴𝐶)
2 nfmpt1 5131 . . . . . . 7 𝑥(𝑥𝐴𝐶)
31, 2nfcxfr 2956 . . . . . 6 𝑥𝐹
43dffo3f 41793 . . . . 5 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
54simplbi 501 . . . 4 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
61fmpt 6855 . . . . . 6 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
76bicomi 227 . . . . 5 (𝐹:𝐴𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
87biimpi 219 . . . 4 (𝐹:𝐴𝐵 → ∀𝑥𝐴 𝐶𝐵)
95, 8syl 17 . . 3 (𝐹:𝐴onto𝐵 → ∀𝑥𝐴 𝐶𝐵)
103foelrnf 41800 . . . . 5 ((𝐹:𝐴onto𝐵𝑦𝐵) → ∃𝑥𝐴 𝑦 = (𝐹𝑥))
11 nfcv 2958 . . . . . . . 8 𝑥𝐴
12 nfcv 2958 . . . . . . . 8 𝑥𝐵
133, 11, 12nffo 6568 . . . . . . 7 𝑥 𝐹:𝐴onto𝐵
14 simpr 488 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → 𝑦 = (𝐹𝑥))
15 simpr 488 . . . . . . . . . . . 12 ((𝐹:𝐴onto𝐵𝑥𝐴) → 𝑥𝐴)
169r19.21bi 3176 . . . . . . . . . . . 12 ((𝐹:𝐴onto𝐵𝑥𝐴) → 𝐶𝐵)
171fvmpt2 6760 . . . . . . . . . . . 12 ((𝑥𝐴𝐶𝐵) → (𝐹𝑥) = 𝐶)
1815, 16, 17syl2anc 587 . . . . . . . . . . 11 ((𝐹:𝐴onto𝐵𝑥𝐴) → (𝐹𝑥) = 𝐶)
1918adantr 484 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → (𝐹𝑥) = 𝐶)
2014, 19eqtrd 2836 . . . . . . . . 9 (((𝐹:𝐴onto𝐵𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → 𝑦 = 𝐶)
2120ex 416 . . . . . . . 8 ((𝐹:𝐴onto𝐵𝑥𝐴) → (𝑦 = (𝐹𝑥) → 𝑦 = 𝐶))
2221ex 416 . . . . . . 7 (𝐹:𝐴onto𝐵 → (𝑥𝐴 → (𝑦 = (𝐹𝑥) → 𝑦 = 𝐶)))
2313, 22reximdai 3273 . . . . . 6 (𝐹:𝐴onto𝐵 → (∃𝑥𝐴 𝑦 = (𝐹𝑥) → ∃𝑥𝐴 𝑦 = 𝐶))
2423adantr 484 . . . . 5 ((𝐹:𝐴onto𝐵𝑦𝐵) → (∃𝑥𝐴 𝑦 = (𝐹𝑥) → ∃𝑥𝐴 𝑦 = 𝐶))
2510, 24mpd 15 . . . 4 ((𝐹:𝐴onto𝐵𝑦𝐵) → ∃𝑥𝐴 𝑦 = 𝐶)
2625ralrimiva 3152 . . 3 (𝐹:𝐴onto𝐵 → ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶)
279, 26jca 515 . 2 (𝐹:𝐴onto𝐵 → (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶))
286biimpi 219 . . . . 5 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
2928adantr 484 . . . 4 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) → 𝐹:𝐴𝐵)
30 nfv 1915 . . . . . 6 𝑦𝑥𝐴 𝐶𝐵
31 nfra1 3186 . . . . . 6 𝑦𝑦𝐵𝑥𝐴 𝑦 = 𝐶
3230, 31nfan 1900 . . . . 5 𝑦(∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶)
33 simpll 766 . . . . . . 7 (((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) ∧ 𝑦𝐵) → ∀𝑥𝐴 𝐶𝐵)
34 rspa 3174 . . . . . . . 8 ((∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶𝑦𝐵) → ∃𝑥𝐴 𝑦 = 𝐶)
3534adantll 713 . . . . . . 7 (((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) ∧ 𝑦𝐵) → ∃𝑥𝐴 𝑦 = 𝐶)
36 nfra1 3186 . . . . . . . . 9 𝑥𝑥𝐴 𝐶𝐵
37 simp3 1135 . . . . . . . . . . 11 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴𝑦 = 𝐶) → 𝑦 = 𝐶)
38 simpr 488 . . . . . . . . . . . . . 14 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴) → 𝑥𝐴)
39 rspa 3174 . . . . . . . . . . . . . 14 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴) → 𝐶𝐵)
4038, 39, 17syl2anc 587 . . . . . . . . . . . . 13 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴) → (𝐹𝑥) = 𝐶)
4140eqcomd 2807 . . . . . . . . . . . 12 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴) → 𝐶 = (𝐹𝑥))
42413adant3 1129 . . . . . . . . . . 11 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴𝑦 = 𝐶) → 𝐶 = (𝐹𝑥))
4337, 42eqtrd 2836 . . . . . . . . . 10 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴𝑦 = 𝐶) → 𝑦 = (𝐹𝑥))
44433exp 1116 . . . . . . . . 9 (∀𝑥𝐴 𝐶𝐵 → (𝑥𝐴 → (𝑦 = 𝐶𝑦 = (𝐹𝑥))))
4536, 44reximdai 3273 . . . . . . . 8 (∀𝑥𝐴 𝐶𝐵 → (∃𝑥𝐴 𝑦 = 𝐶 → ∃𝑥𝐴 𝑦 = (𝐹𝑥)))
4645imp 410 . . . . . . 7 ((∀𝑥𝐴 𝐶𝐵 ∧ ∃𝑥𝐴 𝑦 = 𝐶) → ∃𝑥𝐴 𝑦 = (𝐹𝑥))
4733, 35, 46syl2anc 587 . . . . . 6 (((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) ∧ 𝑦𝐵) → ∃𝑥𝐴 𝑦 = (𝐹𝑥))
4847ex 416 . . . . 5 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) → (𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥)))
4932, 48ralrimi 3183 . . . 4 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) → ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥))
5029, 49jca 515 . . 3 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) → (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
5150, 4sylibr 237 . 2 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) → 𝐹:𝐴onto𝐵)
5227, 51impbii 212 1 (𝐹:𝐴onto𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wral 3109  wrex 3110  cmpt 5113  wf 6324  ontowfo 6326  cfv 6328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fo 6334  df-fv 6336
This theorem is referenced by:  disjinfi  41807
  Copyright terms: Public domain W3C validator