Proof of Theorem fompt
| Step | Hyp | Ref
| Expression |
| 1 | | fof 6795 |
. . . 4
⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| 2 | | fompt.1 |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| 3 | 2 | fmpt 7105 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
| 4 | 1, 3 | sylibr 234 |
. . 3
⊢ (𝐹:𝐴–onto→𝐵 → ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) |
| 5 | | nfmpt1 5225 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐶) |
| 6 | 2, 5 | nfcxfr 2897 |
. . . . . 6
⊢
Ⅎ𝑥𝐹 |
| 7 | 6 | foelrnf 7103 |
. . . . 5
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
| 8 | | nfcv 2899 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐴 |
| 9 | | nfcv 2899 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐵 |
| 10 | 6, 8, 9 | nffo 6794 |
. . . . . . 7
⊢
Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
| 11 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (𝐹‘𝑥)) → 𝑦 = (𝐹‘𝑥)) |
| 12 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 13 | 4 | r19.21bi 3238 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
| 14 | 2 | fvmpt2 7002 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → (𝐹‘𝑥) = 𝐶) |
| 15 | 12, 13, 14 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) |
| 16 | 15 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (𝐹‘𝑥)) → (𝐹‘𝑥) = 𝐶) |
| 17 | 11, 16 | eqtrd 2771 |
. . . . . . . 8
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (𝐹‘𝑥)) → 𝑦 = 𝐶) |
| 18 | 17 | exp31 419 |
. . . . . . 7
⊢ (𝐹:𝐴–onto→𝐵 → (𝑥 ∈ 𝐴 → (𝑦 = (𝐹‘𝑥) → 𝑦 = 𝐶))) |
| 19 | 10, 18 | reximdai 3248 |
. . . . . 6
⊢ (𝐹:𝐴–onto→𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐶)) |
| 20 | 19 | adantr 480 |
. . . . 5
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐶)) |
| 21 | 7, 20 | mpd 15 |
. . . 4
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) |
| 22 | 21 | ralrimiva 3133 |
. . 3
⊢ (𝐹:𝐴–onto→𝐵 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) |
| 23 | 4, 22 | jca 511 |
. 2
⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶)) |
| 24 | 3 | biimpi 216 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 → 𝐹:𝐴⟶𝐵) |
| 25 | 24 | adantr 480 |
. . 3
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) → 𝐹:𝐴⟶𝐵) |
| 26 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑦∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
| 27 | | nfra1 3270 |
. . . . 5
⊢
Ⅎ𝑦∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶 |
| 28 | 26, 27 | nfan 1899 |
. . . 4
⊢
Ⅎ𝑦(∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) |
| 29 | | simpll 766 |
. . . . 5
⊢
(((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) ∧ 𝑦 ∈ 𝐵) → ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) |
| 30 | | rspa 3235 |
. . . . . 6
⊢
((∀𝑦 ∈
𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) |
| 31 | 30 | adantll 714 |
. . . . 5
⊢
(((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) |
| 32 | | nfra1 3270 |
. . . . . 6
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
| 33 | | simp3 1138 |
. . . . . . . 8
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → 𝑦 = 𝐶) |
| 34 | | simpr 484 |
. . . . . . . . . . 11
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 35 | | rspa 3235 |
. . . . . . . . . . 11
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
| 36 | 34, 35, 14 | syl2anc 584 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) |
| 37 | 36 | eqcomd 2742 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝐶 = (𝐹‘𝑥)) |
| 38 | 37 | 3adant3 1132 |
. . . . . . . 8
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → 𝐶 = (𝐹‘𝑥)) |
| 39 | 33, 38 | eqtrd 2771 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → 𝑦 = (𝐹‘𝑥)) |
| 40 | 39 | 3exp 1119 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝑦 = 𝐶 → 𝑦 = (𝐹‘𝑥)))) |
| 41 | 32, 40 | reximdai 3248 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐶 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
| 42 | 29, 31, 41 | sylc 65 |
. . . 4
⊢
(((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
| 43 | 28, 42 | ralrimia 3245 |
. . 3
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
| 44 | 6 | dffo3f 7101 |
. . 3
⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
| 45 | 25, 43, 44 | sylanbrc 583 |
. 2
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶) → 𝐹:𝐴–onto→𝐵) |
| 46 | 23, 45 | impbii 209 |
1
⊢ (𝐹:𝐴–onto→𝐵 ↔ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶)) |