Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fompt Structured version   Visualization version   GIF version

Theorem fompt 42619
Description: Express being onto for a mapping operation. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
fompt.1 𝐹 = (𝑥𝐴𝐶)
Assertion
Ref Expression
fompt (𝐹:𝐴onto𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐶   𝑦,𝐹
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem fompt
StepHypRef Expression
1 fompt.1 . . . . . . 7 𝐹 = (𝑥𝐴𝐶)
2 nfmpt1 5178 . . . . . . 7 𝑥(𝑥𝐴𝐶)
31, 2nfcxfr 2904 . . . . . 6 𝑥𝐹
43dffo3f 42606 . . . . 5 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
54simplbi 497 . . . 4 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
61fmpt 6966 . . . . . 6 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
76bicomi 223 . . . . 5 (𝐹:𝐴𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
87biimpi 215 . . . 4 (𝐹:𝐴𝐵 → ∀𝑥𝐴 𝐶𝐵)
95, 8syl 17 . . 3 (𝐹:𝐴onto𝐵 → ∀𝑥𝐴 𝐶𝐵)
103foelrnf 42613 . . . . 5 ((𝐹:𝐴onto𝐵𝑦𝐵) → ∃𝑥𝐴 𝑦 = (𝐹𝑥))
11 nfcv 2906 . . . . . . . 8 𝑥𝐴
12 nfcv 2906 . . . . . . . 8 𝑥𝐵
133, 11, 12nffo 6671 . . . . . . 7 𝑥 𝐹:𝐴onto𝐵
14 simpr 484 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → 𝑦 = (𝐹𝑥))
15 simpr 484 . . . . . . . . . . . 12 ((𝐹:𝐴onto𝐵𝑥𝐴) → 𝑥𝐴)
169r19.21bi 3132 . . . . . . . . . . . 12 ((𝐹:𝐴onto𝐵𝑥𝐴) → 𝐶𝐵)
171fvmpt2 6868 . . . . . . . . . . . 12 ((𝑥𝐴𝐶𝐵) → (𝐹𝑥) = 𝐶)
1815, 16, 17syl2anc 583 . . . . . . . . . . 11 ((𝐹:𝐴onto𝐵𝑥𝐴) → (𝐹𝑥) = 𝐶)
1918adantr 480 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → (𝐹𝑥) = 𝐶)
2014, 19eqtrd 2778 . . . . . . . . 9 (((𝐹:𝐴onto𝐵𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → 𝑦 = 𝐶)
2120ex 412 . . . . . . . 8 ((𝐹:𝐴onto𝐵𝑥𝐴) → (𝑦 = (𝐹𝑥) → 𝑦 = 𝐶))
2221ex 412 . . . . . . 7 (𝐹:𝐴onto𝐵 → (𝑥𝐴 → (𝑦 = (𝐹𝑥) → 𝑦 = 𝐶)))
2313, 22reximdai 3239 . . . . . 6 (𝐹:𝐴onto𝐵 → (∃𝑥𝐴 𝑦 = (𝐹𝑥) → ∃𝑥𝐴 𝑦 = 𝐶))
2423adantr 480 . . . . 5 ((𝐹:𝐴onto𝐵𝑦𝐵) → (∃𝑥𝐴 𝑦 = (𝐹𝑥) → ∃𝑥𝐴 𝑦 = 𝐶))
2510, 24mpd 15 . . . 4 ((𝐹:𝐴onto𝐵𝑦𝐵) → ∃𝑥𝐴 𝑦 = 𝐶)
2625ralrimiva 3107 . . 3 (𝐹:𝐴onto𝐵 → ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶)
279, 26jca 511 . 2 (𝐹:𝐴onto𝐵 → (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶))
286biimpi 215 . . . . 5 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
2928adantr 480 . . . 4 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) → 𝐹:𝐴𝐵)
30 nfv 1918 . . . . . 6 𝑦𝑥𝐴 𝐶𝐵
31 nfra1 3142 . . . . . 6 𝑦𝑦𝐵𝑥𝐴 𝑦 = 𝐶
3230, 31nfan 1903 . . . . 5 𝑦(∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶)
33 simpll 763 . . . . . . 7 (((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) ∧ 𝑦𝐵) → ∀𝑥𝐴 𝐶𝐵)
34 rspa 3130 . . . . . . . 8 ((∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶𝑦𝐵) → ∃𝑥𝐴 𝑦 = 𝐶)
3534adantll 710 . . . . . . 7 (((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) ∧ 𝑦𝐵) → ∃𝑥𝐴 𝑦 = 𝐶)
36 nfra1 3142 . . . . . . . . 9 𝑥𝑥𝐴 𝐶𝐵
37 simp3 1136 . . . . . . . . . . 11 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴𝑦 = 𝐶) → 𝑦 = 𝐶)
38 simpr 484 . . . . . . . . . . . . . 14 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴) → 𝑥𝐴)
39 rspa 3130 . . . . . . . . . . . . . 14 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴) → 𝐶𝐵)
4038, 39, 17syl2anc 583 . . . . . . . . . . . . 13 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴) → (𝐹𝑥) = 𝐶)
4140eqcomd 2744 . . . . . . . . . . . 12 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴) → 𝐶 = (𝐹𝑥))
42413adant3 1130 . . . . . . . . . . 11 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴𝑦 = 𝐶) → 𝐶 = (𝐹𝑥))
4337, 42eqtrd 2778 . . . . . . . . . 10 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴𝑦 = 𝐶) → 𝑦 = (𝐹𝑥))
44433exp 1117 . . . . . . . . 9 (∀𝑥𝐴 𝐶𝐵 → (𝑥𝐴 → (𝑦 = 𝐶𝑦 = (𝐹𝑥))))
4536, 44reximdai 3239 . . . . . . . 8 (∀𝑥𝐴 𝐶𝐵 → (∃𝑥𝐴 𝑦 = 𝐶 → ∃𝑥𝐴 𝑦 = (𝐹𝑥)))
4645imp 406 . . . . . . 7 ((∀𝑥𝐴 𝐶𝐵 ∧ ∃𝑥𝐴 𝑦 = 𝐶) → ∃𝑥𝐴 𝑦 = (𝐹𝑥))
4733, 35, 46syl2anc 583 . . . . . 6 (((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) ∧ 𝑦𝐵) → ∃𝑥𝐴 𝑦 = (𝐹𝑥))
4847ex 412 . . . . 5 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) → (𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥)))
4932, 48ralrimi 3139 . . . 4 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) → ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥))
5029, 49jca 511 . . 3 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) → (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
5150, 4sylibr 233 . 2 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) → 𝐹:𝐴onto𝐵)
5227, 51impbii 208 1 (𝐹:𝐴onto𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cmpt 5153  wf 6414  ontowfo 6416  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426
This theorem is referenced by:  disjinfi  42620
  Copyright terms: Public domain W3C validator