MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nff1o Structured version   Visualization version   GIF version

Theorem nff1o 6847
Description: Bound-variable hypothesis builder for a one-to-one onto function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nff1o.1 𝑥𝐹
nff1o.2 𝑥𝐴
nff1o.3 𝑥𝐵
Assertion
Ref Expression
nff1o 𝑥 𝐹:𝐴1-1-onto𝐵

Proof of Theorem nff1o
StepHypRef Expression
1 df-f1o 6570 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
2 nff1o.1 . . . 4 𝑥𝐹
3 nff1o.2 . . . 4 𝑥𝐴
4 nff1o.3 . . . 4 𝑥𝐵
52, 3, 4nff1 6803 . . 3 𝑥 𝐹:𝐴1-1𝐵
62, 3, 4nffo 6820 . . 3 𝑥 𝐹:𝐴onto𝐵
75, 6nfan 1897 . 2 𝑥(𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵)
81, 7nfxfr 1850 1 𝑥 𝐹:𝐴1-1-onto𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1780  wnfc 2888  1-1wf1 6560  ontowfo 6561  1-1-ontowf1o 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570
This theorem is referenced by:  nfiso  7342  nfsum1  15723  nfsum  15724  nfcprod1  15941  nfcprod  15942  fsumiunle  32836  esumiun  34075  stoweidlem35  45991
  Copyright terms: Public domain W3C validator