![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nff1o | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a one-to-one onto function. (Contributed by NM, 16-May-2004.) |
Ref | Expression |
---|---|
nff1o.1 | ⊢ Ⅎ𝑥𝐹 |
nff1o.2 | ⊢ Ⅎ𝑥𝐴 |
nff1o.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nff1o | ⊢ Ⅎ𝑥 𝐹:𝐴–1-1-onto→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1o 6550 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
2 | nff1o.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | nff1o.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | nff1o.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
5 | 2, 3, 4 | nff1 6785 | . . 3 ⊢ Ⅎ𝑥 𝐹:𝐴–1-1→𝐵 |
6 | 2, 3, 4 | nffo 6804 | . . 3 ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
7 | 5, 6 | nfan 1901 | . 2 ⊢ Ⅎ𝑥(𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵) |
8 | 1, 7 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴–1-1-onto→𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 Ⅎwnf 1784 Ⅎwnfc 2882 –1-1→wf1 6540 –onto→wfo 6541 –1-1-onto→wf1o 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 |
This theorem is referenced by: nfiso 7322 nfsum1 15643 nfsum 15644 nfcprod1 15861 nfcprod 15862 fsumiunle 32317 esumiun 33405 stoweidlem35 45062 |
Copyright terms: Public domain | W3C validator |