| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nff1o | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a one-to-one onto function. (Contributed by NM, 16-May-2004.) |
| Ref | Expression |
|---|---|
| nff1o.1 | ⊢ Ⅎ𝑥𝐹 |
| nff1o.2 | ⊢ Ⅎ𝑥𝐴 |
| nff1o.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nff1o | ⊢ Ⅎ𝑥 𝐹:𝐴–1-1-onto→𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 6506 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
| 2 | nff1o.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nff1o.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nff1o.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 2, 3, 4 | nff1 6736 | . . 3 ⊢ Ⅎ𝑥 𝐹:𝐴–1-1→𝐵 |
| 6 | 2, 3, 4 | nffo 6753 | . . 3 ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
| 7 | 5, 6 | nfan 1899 | . 2 ⊢ Ⅎ𝑥(𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵) |
| 8 | 1, 7 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴–1-1-onto→𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Ⅎwnf 1783 Ⅎwnfc 2876 –1-1→wf1 6496 –onto→wfo 6497 –1-1-onto→wf1o 6498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 |
| This theorem is referenced by: nfiso 7279 nfsum1 15632 nfsum 15633 nfcprod1 15850 nfcprod 15851 fsumiunle 32727 esumiun 34057 stoweidlem35 46006 |
| Copyright terms: Public domain | W3C validator |