![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nff1o | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a one-to-one onto function. (Contributed by NM, 16-May-2004.) |
Ref | Expression |
---|---|
nff1o.1 | ⊢ Ⅎ𝑥𝐹 |
nff1o.2 | ⊢ Ⅎ𝑥𝐴 |
nff1o.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nff1o | ⊢ Ⅎ𝑥 𝐹:𝐴–1-1-onto→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1o 6570 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
2 | nff1o.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | nff1o.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | nff1o.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
5 | 2, 3, 4 | nff1 6803 | . . 3 ⊢ Ⅎ𝑥 𝐹:𝐴–1-1→𝐵 |
6 | 2, 3, 4 | nffo 6820 | . . 3 ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
7 | 5, 6 | nfan 1897 | . 2 ⊢ Ⅎ𝑥(𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵) |
8 | 1, 7 | nfxfr 1850 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴–1-1-onto→𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 Ⅎwnf 1780 Ⅎwnfc 2888 –1-1→wf1 6560 –onto→wfo 6561 –1-1-onto→wf1o 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 |
This theorem is referenced by: nfiso 7342 nfsum1 15723 nfsum 15724 nfcprod1 15941 nfcprod 15942 fsumiunle 32836 esumiun 34075 stoweidlem35 45991 |
Copyright terms: Public domain | W3C validator |