| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nff1o | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a one-to-one onto function. (Contributed by NM, 16-May-2004.) |
| Ref | Expression |
|---|---|
| nff1o.1 | ⊢ Ⅎ𝑥𝐹 |
| nff1o.2 | ⊢ Ⅎ𝑥𝐴 |
| nff1o.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nff1o | ⊢ Ⅎ𝑥 𝐹:𝐴–1-1-onto→𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 6488 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
| 2 | nff1o.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nff1o.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nff1o.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 2, 3, 4 | nff1 6717 | . . 3 ⊢ Ⅎ𝑥 𝐹:𝐴–1-1→𝐵 |
| 6 | 2, 3, 4 | nffo 6734 | . . 3 ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
| 7 | 5, 6 | nfan 1900 | . 2 ⊢ Ⅎ𝑥(𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵) |
| 8 | 1, 7 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴–1-1-onto→𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Ⅎwnf 1784 Ⅎwnfc 2879 –1-1→wf1 6478 –onto→wfo 6479 –1-1-onto→wf1o 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 |
| This theorem is referenced by: nfiso 7256 nfsum1 15597 nfsum 15598 nfcprod1 15815 nfcprod 15816 fsumiunle 32812 esumiun 34107 stoweidlem35 46081 |
| Copyright terms: Public domain | W3C validator |