MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nff1o Structured version   Visualization version   GIF version

Theorem nff1o 6860
Description: Bound-variable hypothesis builder for a one-to-one onto function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nff1o.1 𝑥𝐹
nff1o.2 𝑥𝐴
nff1o.3 𝑥𝐵
Assertion
Ref Expression
nff1o 𝑥 𝐹:𝐴1-1-onto𝐵

Proof of Theorem nff1o
StepHypRef Expression
1 df-f1o 6580 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
2 nff1o.1 . . . 4 𝑥𝐹
3 nff1o.2 . . . 4 𝑥𝐴
4 nff1o.3 . . . 4 𝑥𝐵
52, 3, 4nff1 6815 . . 3 𝑥 𝐹:𝐴1-1𝐵
62, 3, 4nffo 6833 . . 3 𝑥 𝐹:𝐴onto𝐵
75, 6nfan 1898 . 2 𝑥(𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵)
81, 7nfxfr 1851 1 𝑥 𝐹:𝐴1-1-onto𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1781  wnfc 2893  1-1wf1 6570  ontowfo 6571  1-1-ontowf1o 6572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580
This theorem is referenced by:  nfiso  7358  nfsum1  15738  nfsum  15739  nfcprod1  15956  nfcprod  15957  fsumiunle  32833  esumiun  34058  stoweidlem35  45956
  Copyright terms: Public domain W3C validator