| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nff1o | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a one-to-one onto function. (Contributed by NM, 16-May-2004.) |
| Ref | Expression |
|---|---|
| nff1o.1 | ⊢ Ⅎ𝑥𝐹 |
| nff1o.2 | ⊢ Ⅎ𝑥𝐴 |
| nff1o.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nff1o | ⊢ Ⅎ𝑥 𝐹:𝐴–1-1-onto→𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 6489 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
| 2 | nff1o.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nff1o.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nff1o.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 2, 3, 4 | nff1 6718 | . . 3 ⊢ Ⅎ𝑥 𝐹:𝐴–1-1→𝐵 |
| 6 | 2, 3, 4 | nffo 6735 | . . 3 ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
| 7 | 5, 6 | nfan 1899 | . 2 ⊢ Ⅎ𝑥(𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵) |
| 8 | 1, 7 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴–1-1-onto→𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Ⅎwnf 1783 Ⅎwnfc 2876 –1-1→wf1 6479 –onto→wfo 6480 –1-1-onto→wf1o 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 |
| This theorem is referenced by: nfiso 7259 nfsum1 15597 nfsum 15598 nfcprod1 15815 nfcprod 15816 fsumiunle 32774 esumiun 34061 stoweidlem35 46016 |
| Copyright terms: Public domain | W3C validator |