![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nffn | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a function with domain. (Contributed by NM, 30-Jan-2004.) |
Ref | Expression |
---|---|
nffn.1 | ⊢ Ⅎ𝑥𝐹 |
nffn.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nffn | ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 6228 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | nffn.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | 2 | nffun 6248 | . . 3 ⊢ Ⅎ𝑥Fun 𝐹 |
4 | 2 | nfdm 5705 | . . . 4 ⊢ Ⅎ𝑥dom 𝐹 |
5 | nffn.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
6 | 4, 5 | nfeq 2960 | . . 3 ⊢ Ⅎ𝑥dom 𝐹 = 𝐴 |
7 | 3, 6 | nfan 1881 | . 2 ⊢ Ⅎ𝑥(Fun 𝐹 ∧ dom 𝐹 = 𝐴) |
8 | 1, 7 | nfxfr 1834 | 1 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1522 Ⅎwnf 1765 Ⅎwnfc 2933 dom cdm 5443 Fun wfun 6219 Fn wfn 6220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rab 3114 df-v 3439 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-br 4963 df-opab 5025 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-fun 6227 df-fn 6228 |
This theorem is referenced by: nff 6378 nffo 6457 feqmptdf 6603 nfixp 8329 nfixp1 8330 bnj1463 31941 choicefi 41003 stoweidlem31 41858 stoweidlem35 41862 stoweidlem59 41886 |
Copyright terms: Public domain | W3C validator |