Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nffn | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a function with domain. (Contributed by NM, 30-Jan-2004.) |
Ref | Expression |
---|---|
nffn.1 | ⊢ Ⅎ𝑥𝐹 |
nffn.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nffn | ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 6494 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | nffn.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | 2 | nffun 6519 | . . 3 ⊢ Ⅎ𝑥Fun 𝐹 |
4 | 2 | nfdm 5902 | . . . 4 ⊢ Ⅎ𝑥dom 𝐹 |
5 | nffn.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
6 | 4, 5 | nfeq 2918 | . . 3 ⊢ Ⅎ𝑥dom 𝐹 = 𝐴 |
7 | 3, 6 | nfan 1902 | . 2 ⊢ Ⅎ𝑥(Fun 𝐹 ∧ dom 𝐹 = 𝐴) |
8 | 1, 7 | nfxfr 1855 | 1 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1541 Ⅎwnf 1785 Ⅎwnfc 2885 dom cdm 5630 Fun wfun 6485 Fn wfn 6486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rab 3406 df-v 3445 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-sn 4585 df-pr 4587 df-op 4591 df-br 5104 df-opab 5166 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-fun 6493 df-fn 6494 |
This theorem is referenced by: nff 6659 nffo 6750 feqmptdf 6907 nfixpw 8787 nfixp 8788 nfixp1 8789 bnj1463 33401 choicefi 43123 stoweidlem31 43964 stoweidlem35 43968 stoweidlem59 43992 |
Copyright terms: Public domain | W3C validator |