MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nffn Structured version   Visualization version   GIF version

Theorem nffn 6322
Description: Bound-variable hypothesis builder for a function with domain. (Contributed by NM, 30-Jan-2004.)
Hypotheses
Ref Expression
nffn.1 𝑥𝐹
nffn.2 𝑥𝐴
Assertion
Ref Expression
nffn 𝑥 𝐹 Fn 𝐴

Proof of Theorem nffn
StepHypRef Expression
1 df-fn 6228 . 2 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
2 nffn.1 . . . 4 𝑥𝐹
32nffun 6248 . . 3 𝑥Fun 𝐹
42nfdm 5705 . . . 4 𝑥dom 𝐹
5 nffn.2 . . . 4 𝑥𝐴
64, 5nfeq 2960 . . 3 𝑥dom 𝐹 = 𝐴
73, 6nfan 1881 . 2 𝑥(Fun 𝐹 ∧ dom 𝐹 = 𝐴)
81, 7nfxfr 1834 1 𝑥 𝐹 Fn 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1522  wnf 1765  wnfc 2933  dom cdm 5443  Fun wfun 6219   Fn wfn 6220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ral 3110  df-rab 3114  df-v 3439  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-br 4963  df-opab 5025  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-fun 6227  df-fn 6228
This theorem is referenced by:  nff  6378  nffo  6457  feqmptdf  6603  nfixp  8329  nfixp1  8330  bnj1463  31941  choicefi  41003  stoweidlem31  41858  stoweidlem35  41862  stoweidlem59  41886
  Copyright terms: Public domain W3C validator