![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nffn | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a function with domain. (Contributed by NM, 30-Jan-2004.) |
Ref | Expression |
---|---|
nffn.1 | ⊢ Ⅎ𝑥𝐹 |
nffn.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nffn | ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 6565 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | nffn.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | 2 | nffun 6590 | . . 3 ⊢ Ⅎ𝑥Fun 𝐹 |
4 | 2 | nfdm 5964 | . . . 4 ⊢ Ⅎ𝑥dom 𝐹 |
5 | nffn.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
6 | 4, 5 | nfeq 2916 | . . 3 ⊢ Ⅎ𝑥dom 𝐹 = 𝐴 |
7 | 3, 6 | nfan 1896 | . 2 ⊢ Ⅎ𝑥(Fun 𝐹 ∧ dom 𝐹 = 𝐴) |
8 | 1, 7 | nfxfr 1849 | 1 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1536 Ⅎwnf 1779 Ⅎwnfc 2887 dom cdm 5688 Fun wfun 6556 Fn wfn 6557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-fun 6564 df-fn 6565 |
This theorem is referenced by: nff 6732 nffo 6819 feqmptdf 6978 nfixpw 8954 nfixp 8955 nfixp1 8956 bnj1463 35047 choicefi 45142 stoweidlem31 45986 stoweidlem35 45990 stoweidlem59 46014 |
Copyright terms: Public domain | W3C validator |