MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nffn Structured version   Visualization version   GIF version

Theorem nffn 6596
Description: Bound-variable hypothesis builder for a function with domain. (Contributed by NM, 30-Jan-2004.)
Hypotheses
Ref Expression
nffn.1 𝑥𝐹
nffn.2 𝑥𝐴
Assertion
Ref Expression
nffn 𝑥 𝐹 Fn 𝐴

Proof of Theorem nffn
StepHypRef Expression
1 df-fn 6494 . 2 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
2 nffn.1 . . . 4 𝑥𝐹
32nffun 6519 . . 3 𝑥Fun 𝐹
42nfdm 5902 . . . 4 𝑥dom 𝐹
5 nffn.2 . . . 4 𝑥𝐴
64, 5nfeq 2918 . . 3 𝑥dom 𝐹 = 𝐴
73, 6nfan 1902 . 2 𝑥(Fun 𝐹 ∧ dom 𝐹 = 𝐴)
81, 7nfxfr 1855 1 𝑥 𝐹 Fn 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1541  wnf 1785  wnfc 2885  dom cdm 5630  Fun wfun 6485   Fn wfn 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ral 3063  df-rab 3406  df-v 3445  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-sn 4585  df-pr 4587  df-op 4591  df-br 5104  df-opab 5166  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-fun 6493  df-fn 6494
This theorem is referenced by:  nff  6659  nffo  6750  feqmptdf  6907  nfixpw  8787  nfixp  8788  nfixp1  8789  bnj1463  33401  choicefi  43123  stoweidlem31  43964  stoweidlem35  43968  stoweidlem59  43992
  Copyright terms: Public domain W3C validator