MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nffn Structured version   Visualization version   GIF version

Theorem nffn 6617
Description: Bound-variable hypothesis builder for a function with domain. (Contributed by NM, 30-Jan-2004.)
Hypotheses
Ref Expression
nffn.1 𝑥𝐹
nffn.2 𝑥𝐴
Assertion
Ref Expression
nffn 𝑥 𝐹 Fn 𝐴

Proof of Theorem nffn
StepHypRef Expression
1 df-fn 6514 . 2 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
2 nffn.1 . . . 4 𝑥𝐹
32nffun 6539 . . 3 𝑥Fun 𝐹
42nfdm 5915 . . . 4 𝑥dom 𝐹
5 nffn.2 . . . 4 𝑥𝐴
64, 5nfeq 2905 . . 3 𝑥dom 𝐹 = 𝐴
73, 6nfan 1899 . 2 𝑥(Fun 𝐹 ∧ dom 𝐹 = 𝐴)
81, 7nfxfr 1853 1 𝑥 𝐹 Fn 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wnf 1783  wnfc 2876  dom cdm 5638  Fun wfun 6505   Fn wfn 6506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-fun 6513  df-fn 6514
This theorem is referenced by:  nff  6684  nffo  6771  feqmptdf  6931  nfixpw  8889  nfixp  8890  nfixp1  8891  bnj1463  35045  choicefi  45194  stoweidlem31  46029  stoweidlem35  46033  stoweidlem59  46057
  Copyright terms: Public domain W3C validator