| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nffn | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a function with domain. (Contributed by NM, 30-Jan-2004.) |
| Ref | Expression |
|---|---|
| nffn.1 | ⊢ Ⅎ𝑥𝐹 |
| nffn.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nffn | ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 6484 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 2 | nffn.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | 2 | nffun 6504 | . . 3 ⊢ Ⅎ𝑥Fun 𝐹 |
| 4 | 2 | nfdm 5890 | . . . 4 ⊢ Ⅎ𝑥dom 𝐹 |
| 5 | nffn.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 6 | 4, 5 | nfeq 2908 | . . 3 ⊢ Ⅎ𝑥dom 𝐹 = 𝐴 |
| 7 | 3, 6 | nfan 1900 | . 2 ⊢ Ⅎ𝑥(Fun 𝐹 ∧ dom 𝐹 = 𝐴) |
| 8 | 1, 7 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 Ⅎwnf 1784 Ⅎwnfc 2879 dom cdm 5614 Fun wfun 6475 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-fun 6483 df-fn 6484 |
| This theorem is referenced by: nff 6647 nffo 6734 feqmptdf 6892 nfixpw 8840 nfixp 8841 nfixp1 8842 bnj1463 35067 choicefi 45245 stoweidlem31 46077 stoweidlem35 46081 stoweidlem59 46105 |
| Copyright terms: Public domain | W3C validator |