Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nffn | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a function with domain. (Contributed by NM, 30-Jan-2004.) |
Ref | Expression |
---|---|
nffn.1 | ⊢ Ⅎ𝑥𝐹 |
nffn.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nffn | ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 6383 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | nffn.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | 2 | nffun 6403 | . . 3 ⊢ Ⅎ𝑥Fun 𝐹 |
4 | 2 | nfdm 5820 | . . . 4 ⊢ Ⅎ𝑥dom 𝐹 |
5 | nffn.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
6 | 4, 5 | nfeq 2917 | . . 3 ⊢ Ⅎ𝑥dom 𝐹 = 𝐴 |
7 | 3, 6 | nfan 1907 | . 2 ⊢ Ⅎ𝑥(Fun 𝐹 ∧ dom 𝐹 = 𝐴) |
8 | 1, 7 | nfxfr 1860 | 1 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1543 Ⅎwnf 1791 Ⅎwnfc 2884 dom cdm 5551 Fun wfun 6374 Fn wfn 6375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-fun 6382 df-fn 6383 |
This theorem is referenced by: nff 6541 nffo 6632 feqmptdf 6782 nfixpw 8597 nfixp 8598 nfixp1 8599 bnj1463 32748 choicefi 42413 stoweidlem31 43247 stoweidlem35 43251 stoweidlem59 43275 |
Copyright terms: Public domain | W3C validator |