MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nordeq Structured version   Visualization version   GIF version

Theorem nordeq 6048
Description: A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998.)
Assertion
Ref Expression
nordeq ((Ord 𝐴𝐵𝐴) → 𝐴𝐵)

Proof of Theorem nordeq
StepHypRef Expression
1 ordirr 6047 . . . 4 (Ord 𝐴 → ¬ 𝐴𝐴)
2 eleq1 2853 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐴𝐵𝐴))
32notbid 310 . . . 4 (𝐴 = 𝐵 → (¬ 𝐴𝐴 ↔ ¬ 𝐵𝐴))
41, 3syl5ibcom 237 . . 3 (Ord 𝐴 → (𝐴 = 𝐵 → ¬ 𝐵𝐴))
54necon2ad 2982 . 2 (Ord 𝐴 → (𝐵𝐴𝐴𝐵))
65imp 398 1 ((Ord 𝐴𝐵𝐴) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387   = wceq 1507  wcel 2050  wne 2967  Ord word 6028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pr 5186
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3682  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-br 4930  df-opab 4992  df-eprel 5317  df-fr 5366  df-we 5368  df-ord 6032
This theorem is referenced by:  phplem1  8492  php  8497  ordtop  33310  limsucncmpi  33319
  Copyright terms: Public domain W3C validator