MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nordeq Structured version   Visualization version   GIF version

Theorem nordeq 6270
Description: A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998.)
Assertion
Ref Expression
nordeq ((Ord 𝐴𝐵𝐴) → 𝐴𝐵)

Proof of Theorem nordeq
StepHypRef Expression
1 ordirr 6269 . . . 4 (Ord 𝐴 → ¬ 𝐴𝐴)
2 eleq1 2826 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐴𝐵𝐴))
32notbid 317 . . . 4 (𝐴 = 𝐵 → (¬ 𝐴𝐴 ↔ ¬ 𝐵𝐴))
41, 3syl5ibcom 244 . . 3 (Ord 𝐴 → (𝐴 = 𝐵 → ¬ 𝐵𝐴))
54necon2ad 2957 . 2 (Ord 𝐴 → (𝐵𝐴𝐴𝐵))
65imp 406 1 ((Ord 𝐴𝐵𝐴) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  Ord word 6250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-eprel 5486  df-fr 5535  df-we 5537  df-ord 6254
This theorem is referenced by:  phplem1  8892  php  8897  nogt01o  33826  ordtop  34552  limsucncmpi  34561
  Copyright terms: Public domain W3C validator