MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nordeq Structured version   Visualization version   GIF version

Theorem nordeq 6351
Description: A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998.)
Assertion
Ref Expression
nordeq ((Ord 𝐴𝐵𝐴) → 𝐴𝐵)

Proof of Theorem nordeq
StepHypRef Expression
1 ordirr 6350 . . . 4 (Ord 𝐴 → ¬ 𝐴𝐴)
2 eleq1 2816 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐴𝐵𝐴))
32notbid 318 . . . 4 (𝐴 = 𝐵 → (¬ 𝐴𝐴 ↔ ¬ 𝐵𝐴))
41, 3syl5ibcom 245 . . 3 (Ord 𝐴 → (𝐴 = 𝐵 → ¬ 𝐵𝐴))
54necon2ad 2940 . 2 (Ord 𝐴 → (𝐵𝐴𝐴𝐵))
65imp 406 1 ((Ord 𝐴𝐵𝐴) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Ord word 6331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-eprel 5538  df-fr 5591  df-we 5593  df-ord 6335
This theorem is referenced by:  php  9171  nogt01o  27608  ordtop  36424  limsucncmpi  36433
  Copyright terms: Public domain W3C validator