MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nordeq Structured version   Visualization version   GIF version

Theorem nordeq 6414
Description: A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998.)
Assertion
Ref Expression
nordeq ((Ord 𝐴𝐵𝐴) → 𝐴𝐵)

Proof of Theorem nordeq
StepHypRef Expression
1 ordirr 6413 . . . 4 (Ord 𝐴 → ¬ 𝐴𝐴)
2 eleq1 2832 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐴𝐵𝐴))
32notbid 318 . . . 4 (𝐴 = 𝐵 → (¬ 𝐴𝐴 ↔ ¬ 𝐵𝐴))
41, 3syl5ibcom 245 . . 3 (Ord 𝐴 → (𝐴 = 𝐵 → ¬ 𝐵𝐴))
54necon2ad 2961 . 2 (Ord 𝐴 → (𝐵𝐴𝐴𝐵))
65imp 406 1 ((Ord 𝐴𝐵𝐴) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  Ord word 6394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-eprel 5599  df-fr 5652  df-we 5654  df-ord 6398
This theorem is referenced by:  php  9273  phplem1OLD  9280  phpOLD  9285  nogt01o  27759  ordtop  36402  limsucncmpi  36411
  Copyright terms: Public domain W3C validator