Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nordeq | Structured version Visualization version GIF version |
Description: A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998.) |
Ref | Expression |
---|---|
nordeq | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordirr 6284 | . . . 4 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
2 | eleq1 2826 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
3 | 2 | notbid 318 | . . . 4 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 ∈ 𝐴 ↔ ¬ 𝐵 ∈ 𝐴)) |
4 | 1, 3 | syl5ibcom 244 | . . 3 ⊢ (Ord 𝐴 → (𝐴 = 𝐵 → ¬ 𝐵 ∈ 𝐴)) |
5 | 4 | necon2ad 2958 | . 2 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 → 𝐴 ≠ 𝐵)) |
6 | 5 | imp 407 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Ord word 6265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-eprel 5495 df-fr 5544 df-we 5546 df-ord 6269 |
This theorem is referenced by: php 8993 phplem1OLD 9000 phpOLD 9005 nogt01o 33899 ordtop 34625 limsucncmpi 34634 |
Copyright terms: Public domain | W3C validator |