Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nordeq | Structured version Visualization version GIF version |
Description: A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998.) |
Ref | Expression |
---|---|
nordeq | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordirr 6269 | . . . 4 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
2 | eleq1 2826 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
3 | 2 | notbid 317 | . . . 4 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 ∈ 𝐴 ↔ ¬ 𝐵 ∈ 𝐴)) |
4 | 1, 3 | syl5ibcom 244 | . . 3 ⊢ (Ord 𝐴 → (𝐴 = 𝐵 → ¬ 𝐵 ∈ 𝐴)) |
5 | 4 | necon2ad 2957 | . 2 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 → 𝐴 ≠ 𝐵)) |
6 | 5 | imp 406 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Ord word 6250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-eprel 5486 df-fr 5535 df-we 5537 df-ord 6254 |
This theorem is referenced by: phplem1 8892 php 8897 nogt01o 33826 ordtop 34552 limsucncmpi 34561 |
Copyright terms: Public domain | W3C validator |