| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ordtop | Structured version Visualization version GIF version | ||
| Description: An ordinal is a topology iff it is not its supremum (union), proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 1-Nov-2015.) |
| Ref | Expression |
|---|---|
| ordtop | ⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ≠ ∪ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | topopn 22879 | . . 3 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 3 | nordeq 6384 | . . . 4 ⊢ ((Ord 𝐽 ∧ ∪ 𝐽 ∈ 𝐽) → 𝐽 ≠ ∪ 𝐽) | |
| 4 | 3 | ex 412 | . . 3 ⊢ (Ord 𝐽 → (∪ 𝐽 ∈ 𝐽 → 𝐽 ≠ ∪ 𝐽)) |
| 5 | 2, 4 | syl5 34 | . 2 ⊢ (Ord 𝐽 → (𝐽 ∈ Top → 𝐽 ≠ ∪ 𝐽)) |
| 6 | onsuctop 36375 | . . 3 ⊢ (∪ 𝐽 ∈ On → suc ∪ 𝐽 ∈ Top) | |
| 7 | 6 | ordtoplem 36377 | . 2 ⊢ (Ord 𝐽 → (𝐽 ≠ ∪ 𝐽 → 𝐽 ∈ Top)) |
| 8 | 5, 7 | impbid 212 | 1 ⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ≠ ∪ 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2107 ≠ wne 2931 ∪ cuni 4889 Ord word 6364 Topctop 22866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6495 df-fun 6544 df-fv 6550 df-topgen 17464 df-top 22867 df-bases 22919 |
| This theorem is referenced by: ordtopconn 36381 ordtopt0 36384 ordcmp 36389 |
| Copyright terms: Public domain | W3C validator |