![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ordtop | Structured version Visualization version GIF version |
Description: An ordinal is a topology iff it is not its supremum (union), proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 1-Nov-2015.) |
Ref | Expression |
---|---|
ordtop | ⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ≠ ∪ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | topopn 22933 | . . 3 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
3 | nordeq 6414 | . . . 4 ⊢ ((Ord 𝐽 ∧ ∪ 𝐽 ∈ 𝐽) → 𝐽 ≠ ∪ 𝐽) | |
4 | 3 | ex 412 | . . 3 ⊢ (Ord 𝐽 → (∪ 𝐽 ∈ 𝐽 → 𝐽 ≠ ∪ 𝐽)) |
5 | 2, 4 | syl5 34 | . 2 ⊢ (Ord 𝐽 → (𝐽 ∈ Top → 𝐽 ≠ ∪ 𝐽)) |
6 | onsuctop 36399 | . . 3 ⊢ (∪ 𝐽 ∈ On → suc ∪ 𝐽 ∈ Top) | |
7 | 6 | ordtoplem 36401 | . 2 ⊢ (Ord 𝐽 → (𝐽 ≠ ∪ 𝐽 → 𝐽 ∈ Top)) |
8 | 5, 7 | impbid 212 | 1 ⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ≠ ∪ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ≠ wne 2946 ∪ cuni 4931 Ord word 6394 Topctop 22920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fv 6581 df-topgen 17503 df-top 22921 df-bases 22974 |
This theorem is referenced by: ordtopconn 36405 ordtopt0 36408 ordcmp 36413 |
Copyright terms: Public domain | W3C validator |