![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ordtop | Structured version Visualization version GIF version |
Description: An ordinal is a topology iff it is not its supremum (union), proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 1-Nov-2015.) |
Ref | Expression |
---|---|
ordtop | ⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ≠ ∪ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | topopn 21081 | . . 3 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
3 | nordeq 5982 | . . . 4 ⊢ ((Ord 𝐽 ∧ ∪ 𝐽 ∈ 𝐽) → 𝐽 ≠ ∪ 𝐽) | |
4 | 3 | ex 403 | . . 3 ⊢ (Ord 𝐽 → (∪ 𝐽 ∈ 𝐽 → 𝐽 ≠ ∪ 𝐽)) |
5 | 2, 4 | syl5 34 | . 2 ⊢ (Ord 𝐽 → (𝐽 ∈ Top → 𝐽 ≠ ∪ 𝐽)) |
6 | onsuctop 32965 | . . 3 ⊢ (∪ 𝐽 ∈ On → suc ∪ 𝐽 ∈ Top) | |
7 | 6 | ordtoplem 32967 | . 2 ⊢ (Ord 𝐽 → (𝐽 ≠ ∪ 𝐽 → 𝐽 ∈ Top)) |
8 | 5, 7 | impbid 204 | 1 ⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ≠ ∪ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∈ wcel 2166 ≠ wne 2999 ∪ cuni 4658 Ord word 5962 Topctop 21068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-ord 5966 df-on 5967 df-suc 5969 df-iota 6086 df-fun 6125 df-fv 6131 df-topgen 16457 df-top 21069 df-bases 21121 |
This theorem is referenced by: ordtopconn 32971 ordtopt0 32974 ordcmp 32979 |
Copyright terms: Public domain | W3C validator |