Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtop Structured version   Visualization version   GIF version

Theorem ordtop 34552
Description: An ordinal is a topology iff it is not its supremum (union), proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 1-Nov-2015.)
Assertion
Ref Expression
ordtop (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 𝐽))

Proof of Theorem ordtop
StepHypRef Expression
1 eqid 2738 . . . 4 𝐽 = 𝐽
21topopn 21963 . . 3 (𝐽 ∈ Top → 𝐽𝐽)
3 nordeq 6270 . . . 4 ((Ord 𝐽 𝐽𝐽) → 𝐽 𝐽)
43ex 412 . . 3 (Ord 𝐽 → ( 𝐽𝐽𝐽 𝐽))
52, 4syl5 34 . 2 (Ord 𝐽 → (𝐽 ∈ Top → 𝐽 𝐽))
6 onsuctop 34549 . . 3 ( 𝐽 ∈ On → suc 𝐽 ∈ Top)
76ordtoplem 34551 . 2 (Ord 𝐽 → (𝐽 𝐽𝐽 ∈ Top))
85, 7impbid 211 1 (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2108  wne 2942   cuni 4836  Ord word 6250  Topctop 21950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fv 6426  df-topgen 17071  df-top 21951  df-bases 22004
This theorem is referenced by:  ordtopconn  34555  ordtopt0  34558  ordcmp  34563
  Copyright terms: Public domain W3C validator