Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtop Structured version   Visualization version   GIF version

Theorem ordtop 32968
Description: An ordinal is a topology iff it is not its supremum (union), proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 1-Nov-2015.)
Assertion
Ref Expression
ordtop (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 𝐽))

Proof of Theorem ordtop
StepHypRef Expression
1 eqid 2825 . . . 4 𝐽 = 𝐽
21topopn 21081 . . 3 (𝐽 ∈ Top → 𝐽𝐽)
3 nordeq 5982 . . . 4 ((Ord 𝐽 𝐽𝐽) → 𝐽 𝐽)
43ex 403 . . 3 (Ord 𝐽 → ( 𝐽𝐽𝐽 𝐽))
52, 4syl5 34 . 2 (Ord 𝐽 → (𝐽 ∈ Top → 𝐽 𝐽))
6 onsuctop 32965 . . 3 ( 𝐽 ∈ On → suc 𝐽 ∈ Top)
76ordtoplem 32967 . 2 (Ord 𝐽 → (𝐽 𝐽𝐽 ∈ Top))
85, 7impbid 204 1 (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wcel 2166  wne 2999   cuni 4658  Ord word 5962  Topctop 21068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-ord 5966  df-on 5967  df-suc 5969  df-iota 6086  df-fun 6125  df-fv 6131  df-topgen 16457  df-top 21069  df-bases 21121
This theorem is referenced by:  ordtopconn  32971  ordtopt0  32974  ordcmp  32979
  Copyright terms: Public domain W3C validator