MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordn2lp Structured version   Visualization version   GIF version

Theorem ordn2lp 6355
Description: An ordinal class cannot be an element of one of its members. Variant of first part of Theorem 2.2(vii) of [BellMachover] p. 469. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordn2lp (Ord 𝐴 → ¬ (𝐴𝐵𝐵𝐴))

Proof of Theorem ordn2lp
StepHypRef Expression
1 ordirr 6353 . 2 (Ord 𝐴 → ¬ 𝐴𝐴)
2 ordtr 6349 . . 3 (Ord 𝐴 → Tr 𝐴)
3 trel 5226 . . 3 (Tr 𝐴 → ((𝐴𝐵𝐵𝐴) → 𝐴𝐴))
42, 3syl 17 . 2 (Ord 𝐴 → ((𝐴𝐵𝐵𝐴) → 𝐴𝐴))
51, 4mtod 198 1 (Ord 𝐴 → ¬ (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  Tr wtr 5217  Ord word 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-fr 5594  df-we 5596  df-ord 6338
This theorem is referenced by:  ordtri1  6368  ordnbtwn  6430  suc11  6444  smoord  8337  unblem1  9246  cantnfp1lem3  9640  cardprclem  9939  nosepssdm  27605  slerec  27738
  Copyright terms: Public domain W3C validator