| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordn2lp | Structured version Visualization version GIF version | ||
| Description: An ordinal class cannot be an element of one of its members. Variant of first part of Theorem 2.2(vii) of [BellMachover] p. 469. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| ordn2lp | ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordirr 6381 | . 2 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 2 | ordtr 6377 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 3 | trel 5248 | . . 3 ⊢ (Tr 𝐴 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐴 ∈ 𝐴)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (Ord 𝐴 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐴 ∈ 𝐴)) |
| 5 | 1, 4 | mtod 198 | 1 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2107 Tr wtr 5239 Ord word 6362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-tr 5240 df-eprel 5564 df-fr 5617 df-we 5619 df-ord 6366 |
| This theorem is referenced by: ordtri1 6396 ordnbtwn 6457 suc11 6471 smoord 8387 unblem1 9310 cantnfp1lem3 9702 cardprclem 10001 nosepssdm 27667 slerec 27800 |
| Copyright terms: Public domain | W3C validator |