MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordn2lp Structured version   Visualization version   GIF version

Theorem ordn2lp 6406
Description: An ordinal class cannot be an element of one of its members. Variant of first part of Theorem 2.2(vii) of [BellMachover] p. 469. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordn2lp (Ord 𝐴 → ¬ (𝐴𝐵𝐵𝐴))

Proof of Theorem ordn2lp
StepHypRef Expression
1 ordirr 6404 . 2 (Ord 𝐴 → ¬ 𝐴𝐴)
2 ordtr 6400 . . 3 (Ord 𝐴 → Tr 𝐴)
3 trel 5274 . . 3 (Tr 𝐴 → ((𝐴𝐵𝐵𝐴) → 𝐴𝐴))
42, 3syl 17 . 2 (Ord 𝐴 → ((𝐴𝐵𝐵𝐴) → 𝐴𝐴))
51, 4mtod 198 1 (Ord 𝐴 → ¬ (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2106  Tr wtr 5265  Ord word 6385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5589  df-fr 5641  df-we 5643  df-ord 6389
This theorem is referenced by:  ordtri1  6419  ordnbtwn  6479  suc11  6493  smoord  8404  unblem1  9326  cantnfp1lem3  9718  cardprclem  10017  nosepssdm  27746  slerec  27879
  Copyright terms: Public domain W3C validator