MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordn2lp Structured version   Visualization version   GIF version

Theorem ordn2lp 6286
Description: An ordinal class cannot be an element of one of its members. Variant of first part of Theorem 2.2(vii) of [BellMachover] p. 469. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordn2lp (Ord 𝐴 → ¬ (𝐴𝐵𝐵𝐴))

Proof of Theorem ordn2lp
StepHypRef Expression
1 ordirr 6284 . 2 (Ord 𝐴 → ¬ 𝐴𝐴)
2 ordtr 6280 . . 3 (Ord 𝐴 → Tr 𝐴)
3 trel 5198 . . 3 (Tr 𝐴 → ((𝐴𝐵𝐵𝐴) → 𝐴𝐴))
42, 3syl 17 . 2 (Ord 𝐴 → ((𝐴𝐵𝐵𝐴) → 𝐴𝐴))
51, 4mtod 197 1 (Ord 𝐴 → ¬ (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wcel 2106  Tr wtr 5191  Ord word 6265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-fr 5544  df-we 5546  df-ord 6269
This theorem is referenced by:  ordtri1  6299  ordnbtwn  6356  suc11  6369  smoord  8196  unblem1  9066  cantnfp1lem3  9438  cardprclem  9737  nosepssdm  33889  slerec  34013
  Copyright terms: Public domain W3C validator