MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordn2lp Structured version   Visualization version   GIF version

Theorem ordn2lp 6198
Description: An ordinal class cannot be an element of one of its members. Variant of first part of Theorem 2.2(vii) of [BellMachover] p. 469. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordn2lp (Ord 𝐴 → ¬ (𝐴𝐵𝐵𝐴))

Proof of Theorem ordn2lp
StepHypRef Expression
1 ordirr 6196 . 2 (Ord 𝐴 → ¬ 𝐴𝐴)
2 ordtr 6192 . . 3 (Ord 𝐴 → Tr 𝐴)
3 trel 5165 . . 3 (Tr 𝐴 → ((𝐴𝐵𝐵𝐴) → 𝐴𝐴))
42, 3syl 17 . 2 (Ord 𝐴 → ((𝐴𝐵𝐵𝐴) → 𝐴𝐴))
51, 4mtod 201 1 (Ord 𝐴 → ¬ (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wcel 2115  Tr wtr 5158  Ord word 6177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4276  df-if 4450  df-sn 4550  df-pr 4552  df-op 4556  df-uni 4825  df-br 5053  df-opab 5115  df-tr 5159  df-eprel 5452  df-fr 5501  df-we 5503  df-ord 6181
This theorem is referenced by:  ordtri1  6211  ordnbtwn  6268  suc11  6281  smoord  7992  unblem1  8761  cantnfp1lem3  9134  cardprclem  9399  nosepssdm  33215  slerec  33302
  Copyright terms: Public domain W3C validator