MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phplem1OLD Structured version   Visualization version   GIF version

Theorem phplem1OLD 9038
Description: Obsolete lemma for php 9031. (Contributed by NM, 25-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
phplem1OLD ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵}))

Proof of Theorem phplem1OLD
StepHypRef Expression
1 nnord 7752 . . 3 (𝐴 ∈ ω → Ord 𝐴)
2 nordeq 6300 . . . 4 ((Ord 𝐴𝐵𝐴) → 𝐴𝐵)
3 disjsn2 4652 . . . 4 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
42, 3syl 17 . . 3 ((Ord 𝐴𝐵𝐴) → ({𝐴} ∩ {𝐵}) = ∅)
51, 4sylan 581 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐴} ∩ {𝐵}) = ∅)
6 undif4 4406 . . 3 (({𝐴} ∩ {𝐵}) = ∅ → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (({𝐴} ∪ 𝐴) ∖ {𝐵}))
7 df-suc 6287 . . . . 5 suc 𝐴 = (𝐴 ∪ {𝐴})
87equncomi 4095 . . . 4 suc 𝐴 = ({𝐴} ∪ 𝐴)
98difeq1i 4059 . . 3 (suc 𝐴 ∖ {𝐵}) = (({𝐴} ∪ 𝐴) ∖ {𝐵})
106, 9eqtr4di 2794 . 2 (({𝐴} ∩ {𝐵}) = ∅ → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵}))
115, 10syl 17 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  wne 2940  cdif 3889  cun 3890  cin 3891  c0 4262  {csn 4565  Ord word 6280  suc csuc 6283  ωcom 7744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-tr 5199  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-ord 6284  df-on 6285  df-suc 6287  df-om 7745
This theorem is referenced by:  phplem2OLD  9039
  Copyright terms: Public domain W3C validator