MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phplem1OLD Structured version   Visualization version   GIF version

Theorem phplem1OLD 8974
Description: Obsolete lemma for php 8966. (Contributed by NM, 25-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
phplem1OLD ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵}))

Proof of Theorem phplem1OLD
StepHypRef Expression
1 nnord 7709 . . 3 (𝐴 ∈ ω → Ord 𝐴)
2 nordeq 6283 . . . 4 ((Ord 𝐴𝐵𝐴) → 𝐴𝐵)
3 disjsn2 4654 . . . 4 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
42, 3syl 17 . . 3 ((Ord 𝐴𝐵𝐴) → ({𝐴} ∩ {𝐵}) = ∅)
51, 4sylan 580 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐴} ∩ {𝐵}) = ∅)
6 undif4 4406 . . 3 (({𝐴} ∩ {𝐵}) = ∅ → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (({𝐴} ∪ 𝐴) ∖ {𝐵}))
7 df-suc 6270 . . . . 5 suc 𝐴 = (𝐴 ∪ {𝐴})
87equncomi 4094 . . . 4 suc 𝐴 = ({𝐴} ∪ 𝐴)
98difeq1i 4058 . . 3 (suc 𝐴 ∖ {𝐵}) = (({𝐴} ∪ 𝐴) ∖ {𝐵})
106, 9eqtr4di 2798 . 2 (({𝐴} ∩ {𝐵}) = ∅ → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵}))
115, 10syl 17 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wne 2945  cdif 3889  cun 3890  cin 3891  c0 4262  {csn 4567  Ord word 6263  suc csuc 6266  ωcom 7701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-tr 5197  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6267  df-on 6268  df-suc 6270  df-om 7702
This theorem is referenced by:  phplem2OLD  8975
  Copyright terms: Public domain W3C validator