MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phplem1OLD Structured version   Visualization version   GIF version

Theorem phplem1OLD 9213
Description: Obsolete lemma for php 9206. (Contributed by NM, 25-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
phplem1OLD ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵}))

Proof of Theorem phplem1OLD
StepHypRef Expression
1 nnord 7859 . . 3 (𝐴 ∈ ω → Ord 𝐴)
2 nordeq 6380 . . . 4 ((Ord 𝐴𝐵𝐴) → 𝐴𝐵)
3 disjsn2 4715 . . . 4 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
42, 3syl 17 . . 3 ((Ord 𝐴𝐵𝐴) → ({𝐴} ∩ {𝐵}) = ∅)
51, 4sylan 580 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐴} ∩ {𝐵}) = ∅)
6 undif4 4465 . . 3 (({𝐴} ∩ {𝐵}) = ∅ → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (({𝐴} ∪ 𝐴) ∖ {𝐵}))
7 df-suc 6367 . . . . 5 suc 𝐴 = (𝐴 ∪ {𝐴})
87equncomi 4154 . . . 4 suc 𝐴 = ({𝐴} ∪ 𝐴)
98difeq1i 4117 . . 3 (suc 𝐴 ∖ {𝐵}) = (({𝐴} ∪ 𝐴) ∖ {𝐵})
106, 9eqtr4di 2790 . 2 (({𝐴} ∩ {𝐵}) = ∅ → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵}))
115, 10syl 17 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  cdif 3944  cun 3945  cin 3946  c0 4321  {csn 4627  Ord word 6360  suc csuc 6363  ωcom 7851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6364  df-on 6365  df-suc 6367  df-om 7852
This theorem is referenced by:  phplem2OLD  9214
  Copyright terms: Public domain W3C validator