MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phplem1OLD Structured version   Visualization version   GIF version

Theorem phplem1OLD 9254
Description: Obsolete lemma for php 9247 as of 22-Nov-2024. (Contributed by NM, 25-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
phplem1OLD ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵}))

Proof of Theorem phplem1OLD
StepHypRef Expression
1 nnord 7895 . . 3 (𝐴 ∈ ω → Ord 𝐴)
2 nordeq 6403 . . . 4 ((Ord 𝐴𝐵𝐴) → 𝐴𝐵)
3 disjsn2 4712 . . . 4 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
42, 3syl 17 . . 3 ((Ord 𝐴𝐵𝐴) → ({𝐴} ∩ {𝐵}) = ∅)
51, 4sylan 580 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐴} ∩ {𝐵}) = ∅)
6 undif4 4467 . . 3 (({𝐴} ∩ {𝐵}) = ∅ → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (({𝐴} ∪ 𝐴) ∖ {𝐵}))
7 df-suc 6390 . . . . 5 suc 𝐴 = (𝐴 ∪ {𝐴})
87equncomi 4160 . . . 4 suc 𝐴 = ({𝐴} ∪ 𝐴)
98difeq1i 4122 . . 3 (suc 𝐴 ∖ {𝐵}) = (({𝐴} ∪ 𝐴) ∖ {𝐵})
106, 9eqtr4di 2795 . 2 (({𝐴} ∩ {𝐵}) = ∅ → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵}))
115, 10syl 17 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  cdif 3948  cun 3949  cin 3950  c0 4333  {csn 4626  Ord word 6383  suc csuc 6386  ωcom 7887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-ord 6387  df-on 6388  df-suc 6390  df-om 7888
This theorem is referenced by:  phplem2OLD  9255
  Copyright terms: Public domain W3C validator