![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phplem1OLD | Structured version Visualization version GIF version |
Description: Obsolete lemma for php 9273 as of 22-Nov-2024. (Contributed by NM, 25-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
phplem1OLD | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnord 7911 | . . 3 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
2 | nordeq 6414 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐴 ≠ 𝐵) | |
3 | disjsn2 4737 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → ({𝐴} ∩ {𝐵}) = ∅) |
5 | 1, 4 | sylan 579 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ({𝐴} ∩ {𝐵}) = ∅) |
6 | undif4 4490 | . . 3 ⊢ (({𝐴} ∩ {𝐵}) = ∅ → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (({𝐴} ∪ 𝐴) ∖ {𝐵})) | |
7 | df-suc 6401 | . . . . 5 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
8 | 7 | equncomi 4183 | . . . 4 ⊢ suc 𝐴 = ({𝐴} ∪ 𝐴) |
9 | 8 | difeq1i 4145 | . . 3 ⊢ (suc 𝐴 ∖ {𝐵}) = (({𝐴} ∪ 𝐴) ∖ {𝐵}) |
10 | 6, 9 | eqtr4di 2798 | . 2 ⊢ (({𝐴} ∩ {𝐵}) = ∅ → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵})) |
11 | 5, 10 | syl 17 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 ∪ cun 3974 ∩ cin 3975 ∅c0 4352 {csn 4648 Ord word 6394 suc csuc 6397 ωcom 7903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-suc 6401 df-om 7904 |
This theorem is referenced by: phplem2OLD 9281 |
Copyright terms: Public domain | W3C validator |