![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imtr3d | Structured version Visualization version GIF version |
Description: More general version of 3imtr3i 291. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
Ref | Expression |
---|---|
3imtr3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3imtr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3imtr3d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
2 | 3imtr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 3imtr3d.3 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
4 | 2, 3 | sylibd 239 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
5 | 1, 4 | sylbird 260 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: tz6.12i 6948 f1imass 7301 focdmex 7996 tposfn2 8289 naddel1 8743 eroveu 8870 sdomel 9190 ackbij1lem16 10303 ltapr 11114 rpnnen1lem5 13046 qbtwnre 13261 om2uzlt2i 14002 m1dvdsndvds 16845 pcpremul 16890 pcaddlem 16935 pockthlem 16952 prmreclem6 16968 catidd 17738 issgrpd 18768 ghmf1 19286 gexdvds 19626 sylow1lem1 19640 lt6abl 19937 ablfacrplem 20109 isdomn4 20738 drnginvrn0 20776 issrngd 20878 islssd 20956 znrrg 21607 isphld 21695 cnllycmp 25007 nmhmcn 25172 minveclem7 25488 ioorcl2 25626 itg2seq 25797 dvlip2 26054 mdegmullem 26137 plyco0 26251 sincosq1sgn 26558 sincosq2sgn 26559 logcj 26666 argimgt0 26672 lgseisenlem2 27438 sleadd1im 28038 sleadd1 28040 sltonold 28301 om2noseqlt2 28324 remulscllem2 28451 eengtrkg 29019 eengtrkge 29020 ubthlem2 30903 minvecolem7 30915 nmcexi 32058 lnconi 32065 pjnormssi 32200 opsbc2ie 32504 qusvscpbl 33344 tan2h 37572 lindsadd 37573 itg2gt0cn 37635 divrngcl 37917 lshpcmp 38944 cdlemk35s 40894 cdlemk39s 40896 cdlemk42 40898 dihlspsnat 41290 clcnvlem 43585 tz6.12i-afv2 47158 sqrtnegnre 47222 |
Copyright terms: Public domain | W3C validator |