| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imtr3d | Structured version Visualization version GIF version | ||
| Description: More general version of 3imtr3i 291. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3imtr3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3imtr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3imtr3d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3imtr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 3imtr3d.3 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 4 | 2, 3 | sylibd 239 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| 5 | 1, 4 | sylbird 260 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: tz6.12i 6854 f1imass 7204 focdmex 7894 tposfn2 8184 naddel1 8608 eroveu 8742 sdomel 9044 ackbij1lem16 10132 ltapr 10943 rpnnen1lem5 12881 qbtwnre 13100 om2uzlt2i 13860 m1dvdsndvds 16712 pcpremul 16757 pcaddlem 16802 pockthlem 16819 prmreclem6 16835 catidd 17588 issgrpd 18640 ghmf1 19160 gexdvds 19498 sylow1lem1 19512 lt6abl 19809 ablfacrplem 19981 isdomn4 20633 drnginvrn0 20671 issrngd 20772 islssd 20870 znrrg 21504 isphld 21593 cnllycmp 24883 nmhmcn 25048 minveclem7 25363 ioorcl2 25501 itg2seq 25671 dvlip2 25928 mdegmullem 26011 plyco0 26125 sincosq1sgn 26435 sincosq2sgn 26436 logcj 26543 argimgt0 26549 lgseisenlem2 27315 sleadd1im 27931 sleadd1 27933 sltonold 28199 onnolt 28204 om2noseqlt2 28231 remulscllem2 28404 eengtrkg 28966 eengtrkge 28967 ubthlem2 30853 minvecolem7 30865 nmcexi 32008 lnconi 32015 pjnormssi 32150 opsbc2ie 32457 qusvscpbl 33323 tan2h 37673 lindsadd 37674 itg2gt0cn 37736 divrngcl 38018 lshpcmp 39108 cdlemk35s 41057 cdlemk39s 41059 cdlemk42 41061 dihlspsnat 41453 clcnvlem 43741 tz6.12i-afv2 47368 sqrtnegnre 47432 |
| Copyright terms: Public domain | W3C validator |