| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imtr3d | Structured version Visualization version GIF version | ||
| Description: More general version of 3imtr3i 291. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3imtr3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3imtr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3imtr3d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3imtr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 3imtr3d.3 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 4 | 2, 3 | sylibd 239 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| 5 | 1, 4 | sylbird 260 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: tz6.12i 6852 f1imass 7205 focdmex 7898 tposfn2 8188 naddel1 8612 eroveu 8746 sdomel 9048 ackbij1lem16 10147 ltapr 10958 rpnnen1lem5 12900 qbtwnre 13119 om2uzlt2i 13876 m1dvdsndvds 16728 pcpremul 16773 pcaddlem 16818 pockthlem 16835 prmreclem6 16851 catidd 17604 issgrpd 18622 ghmf1 19143 gexdvds 19481 sylow1lem1 19495 lt6abl 19792 ablfacrplem 19964 isdomn4 20619 drnginvrn0 20657 issrngd 20758 islssd 20856 znrrg 21490 isphld 21579 cnllycmp 24871 nmhmcn 25036 minveclem7 25351 ioorcl2 25489 itg2seq 25659 dvlip2 25916 mdegmullem 25999 plyco0 26113 sincosq1sgn 26423 sincosq2sgn 26424 logcj 26531 argimgt0 26537 lgseisenlem2 27303 sleadd1im 27917 sleadd1 27919 sltonold 28185 onnolt 28190 om2noseqlt2 28217 remulscllem2 28388 eengtrkg 28949 eengtrkge 28950 ubthlem2 30833 minvecolem7 30845 nmcexi 31988 lnconi 31995 pjnormssi 32130 opsbc2ie 32438 qusvscpbl 33301 tan2h 37594 lindsadd 37595 itg2gt0cn 37657 divrngcl 37939 lshpcmp 38969 cdlemk35s 40919 cdlemk39s 40921 cdlemk42 40923 dihlspsnat 41315 clcnvlem 43599 tz6.12i-afv2 47231 sqrtnegnre 47295 |
| Copyright terms: Public domain | W3C validator |