![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imtr3d | Structured version Visualization version GIF version |
Description: More general version of 3imtr3i 291. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
Ref | Expression |
---|---|
3imtr3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3imtr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3imtr3d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
2 | 3imtr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 3imtr3d.3 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
4 | 2, 3 | sylibd 238 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
5 | 1, 4 | sylbird 260 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: tz6.12i 6919 f1imass 7266 focdmex 7946 tposfn2 8239 naddel1 8692 eroveu 8812 sdomel 9130 ackbij1lem16 10236 ltapr 11046 rpnnen1lem5 12972 qbtwnre 13185 om2uzlt2i 13923 m1dvdsndvds 16738 pcpremul 16783 pcaddlem 16828 pockthlem 16845 prmreclem6 16861 catidd 17631 issgrpd 18661 ghmf1 19167 gexdvds 19500 sylow1lem1 19514 lt6abl 19811 ablfacrplem 19983 drnginvrn0 20606 issrngd 20700 islssd 20778 isdomn4 21207 znrrg 21431 isphld 21517 cnllycmp 24802 nmhmcn 24967 minveclem7 25283 ioorcl2 25421 itg2seq 25592 dvlip2 25848 mdegmullem 25934 plyco0 26044 sincosq1sgn 26348 sincosq2sgn 26349 logcj 26454 argimgt0 26460 lgseisenlem2 27223 sleadd1im 27818 sleadd1 27820 sltonold 28067 remulscllem2 28110 eengtrkg 28678 eengtrkge 28679 ubthlem2 30558 minvecolem7 30570 nmcexi 31713 lnconi 31720 pjnormssi 31855 opsbc2ie 32150 qusvscpbl 32903 tan2h 36946 lindsadd 36947 itg2gt0cn 37009 divrngcl 37291 lshpcmp 38324 cdlemk35s 40274 cdlemk39s 40276 cdlemk42 40278 dihlspsnat 40670 clcnvlem 42839 tz6.12i-afv2 46412 sqrtnegnre 46476 |
Copyright terms: Public domain | W3C validator |