| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imtr3d | Structured version Visualization version GIF version | ||
| Description: More general version of 3imtr3i 291. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3imtr3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3imtr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3imtr3d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3imtr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 3imtr3d.3 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 4 | 2, 3 | sylibd 239 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| 5 | 1, 4 | sylbird 260 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: tz6.12i 6904 f1imass 7257 focdmex 7954 tposfn2 8247 naddel1 8699 eroveu 8826 sdomel 9138 ackbij1lem16 10248 ltapr 11059 rpnnen1lem5 12997 qbtwnre 13215 om2uzlt2i 13969 m1dvdsndvds 16818 pcpremul 16863 pcaddlem 16908 pockthlem 16925 prmreclem6 16941 catidd 17692 issgrpd 18708 ghmf1 19229 gexdvds 19565 sylow1lem1 19579 lt6abl 19876 ablfacrplem 20048 isdomn4 20676 drnginvrn0 20714 issrngd 20815 islssd 20892 znrrg 21526 isphld 21614 cnllycmp 24906 nmhmcn 25071 minveclem7 25387 ioorcl2 25525 itg2seq 25695 dvlip2 25952 mdegmullem 26035 plyco0 26149 sincosq1sgn 26459 sincosq2sgn 26460 logcj 26567 argimgt0 26573 lgseisenlem2 27339 sleadd1im 27946 sleadd1 27948 sltonold 28214 onnolt 28219 om2noseqlt2 28246 remulscllem2 28404 eengtrkg 28965 eengtrkge 28966 ubthlem2 30852 minvecolem7 30864 nmcexi 32007 lnconi 32014 pjnormssi 32149 opsbc2ie 32457 qusvscpbl 33366 tan2h 37636 lindsadd 37637 itg2gt0cn 37699 divrngcl 37981 lshpcmp 39006 cdlemk35s 40956 cdlemk39s 40958 cdlemk42 40960 dihlspsnat 41352 clcnvlem 43647 tz6.12i-afv2 47272 sqrtnegnre 47336 |
| Copyright terms: Public domain | W3C validator |