![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imtr3d | Structured version Visualization version GIF version |
Description: More general version of 3imtr3i 290. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
Ref | Expression |
---|---|
3imtr3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3imtr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3imtr3d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
2 | 3imtr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 3imtr3d.3 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
4 | 2, 3 | sylibd 238 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
5 | 1, 4 | sylbird 259 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: tz6.12i 6918 f1imass 7265 focdmex 7944 tposfn2 8235 naddel1 8688 eroveu 8808 sdomel 9126 ackbij1lem16 10232 ltapr 11042 rpnnen1lem5 12969 qbtwnre 13182 om2uzlt2i 13920 m1dvdsndvds 16735 pcpremul 16780 pcaddlem 16825 pockthlem 16842 prmreclem6 16858 catidd 17628 issgrpd 18655 ghmf1 19160 gexdvds 19493 sylow1lem1 19507 lt6abl 19804 ablfacrplem 19976 drnginvrn0 20523 issrngd 20612 islssd 20690 isdomn4 21118 znrrg 21340 isphld 21426 cnllycmp 24702 nmhmcn 24867 minveclem7 25183 ioorcl2 25321 itg2seq 25492 dvlip2 25747 mdegmullem 25831 plyco0 25941 sincosq1sgn 26244 sincosq2sgn 26245 logcj 26350 argimgt0 26356 lgseisenlem2 27115 sleadd1im 27709 sleadd1 27711 sltonold 27926 eengtrkg 28511 eengtrkge 28512 ubthlem2 30391 minvecolem7 30403 nmcexi 31546 lnconi 31553 pjnormssi 31688 opsbc2ie 31983 qusvscpbl 32736 tan2h 36783 lindsadd 36784 itg2gt0cn 36846 divrngcl 37128 lshpcmp 38161 cdlemk35s 40111 cdlemk39s 40113 cdlemk42 40115 dihlspsnat 40507 clcnvlem 42676 tz6.12i-afv2 46249 sqrtnegnre 46313 |
Copyright terms: Public domain | W3C validator |