| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imtr3d | Structured version Visualization version GIF version | ||
| Description: More general version of 3imtr3i 291. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3imtr3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3imtr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3imtr3d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3imtr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 3imtr3d.3 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 4 | 2, 3 | sylibd 239 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| 5 | 1, 4 | sylbird 260 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: tz6.12i 6848 f1imass 7198 focdmex 7888 tposfn2 8178 naddel1 8602 eroveu 8736 sdomel 9037 ackbij1lem16 10125 ltapr 10936 rpnnen1lem5 12879 qbtwnre 13098 om2uzlt2i 13858 m1dvdsndvds 16710 pcpremul 16755 pcaddlem 16800 pockthlem 16817 prmreclem6 16833 catidd 17586 issgrpd 18638 ghmf1 19159 gexdvds 19497 sylow1lem1 19511 lt6abl 19808 ablfacrplem 19980 isdomn4 20632 drnginvrn0 20670 issrngd 20771 islssd 20869 znrrg 21503 isphld 21592 cnllycmp 24883 nmhmcn 25048 minveclem7 25363 ioorcl2 25501 itg2seq 25671 dvlip2 25928 mdegmullem 26011 plyco0 26125 sincosq1sgn 26435 sincosq2sgn 26436 logcj 26543 argimgt0 26549 lgseisenlem2 27315 sleadd1im 27931 sleadd1 27933 sltonold 28199 onnolt 28204 om2noseqlt2 28231 remulscllem2 28404 eengtrkg 28965 eengtrkge 28966 ubthlem2 30849 minvecolem7 30861 nmcexi 32004 lnconi 32011 pjnormssi 32146 opsbc2ie 32453 qusvscpbl 33314 tan2h 37658 lindsadd 37659 itg2gt0cn 37721 divrngcl 38003 lshpcmp 39033 cdlemk35s 40982 cdlemk39s 40984 cdlemk42 40986 dihlspsnat 41378 clcnvlem 43662 tz6.12i-afv2 47280 sqrtnegnre 47344 |
| Copyright terms: Public domain | W3C validator |