![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imtr3d | Structured version Visualization version GIF version |
Description: More general version of 3imtr3i 291. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
Ref | Expression |
---|---|
3imtr3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3imtr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3imtr3d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
2 | 3imtr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 3imtr3d.3 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
4 | 2, 3 | sylibd 239 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
5 | 1, 4 | sylbird 260 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: tz6.12i 6934 f1imass 7283 focdmex 7978 tposfn2 8271 naddel1 8723 eroveu 8850 sdomel 9162 ackbij1lem16 10271 ltapr 11082 rpnnen1lem5 13020 qbtwnre 13237 om2uzlt2i 13988 m1dvdsndvds 16831 pcpremul 16876 pcaddlem 16921 pockthlem 16938 prmreclem6 16954 catidd 17724 issgrpd 18755 ghmf1 19276 gexdvds 19616 sylow1lem1 19630 lt6abl 19927 ablfacrplem 20099 isdomn4 20732 drnginvrn0 20770 issrngd 20872 islssd 20950 znrrg 21601 isphld 21689 cnllycmp 25001 nmhmcn 25166 minveclem7 25482 ioorcl2 25620 itg2seq 25791 dvlip2 26048 mdegmullem 26131 plyco0 26245 sincosq1sgn 26554 sincosq2sgn 26555 logcj 26662 argimgt0 26668 lgseisenlem2 27434 sleadd1im 28034 sleadd1 28036 sltonold 28297 om2noseqlt2 28320 remulscllem2 28447 eengtrkg 29015 eengtrkge 29016 ubthlem2 30899 minvecolem7 30911 nmcexi 32054 lnconi 32061 pjnormssi 32196 opsbc2ie 32503 qusvscpbl 33358 tan2h 37598 lindsadd 37599 itg2gt0cn 37661 divrngcl 37943 lshpcmp 38969 cdlemk35s 40919 cdlemk39s 40921 cdlemk42 40923 dihlspsnat 41315 clcnvlem 43612 tz6.12i-afv2 47192 sqrtnegnre 47256 |
Copyright terms: Public domain | W3C validator |