Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3imtr3d | Structured version Visualization version GIF version |
Description: More general version of 3imtr3i 290. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
Ref | Expression |
---|---|
3imtr3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3imtr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3imtr3d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
2 | 3imtr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 3imtr3d.3 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
4 | 2, 3 | sylibd 238 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
5 | 1, 4 | sylbird 259 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: tz6.12i 6782 f1imass 7118 fornex 7772 tposfn2 8035 eroveu 8559 sdomel 8860 ackbij1lem16 9922 ltapr 10732 rpnnen1lem5 12650 qbtwnre 12862 om2uzlt2i 13599 m1dvdsndvds 16427 pcpremul 16472 pcaddlem 16517 pockthlem 16534 prmreclem6 16550 catidd 17306 ghmf1 18778 gexdvds 19104 sylow1lem1 19118 lt6abl 19411 ablfacrplem 19583 drnginvrn0 19924 issrngd 20036 islssd 20112 znrrg 20685 isphld 20771 cnllycmp 24025 nmhmcn 24189 minveclem7 24504 ioorcl2 24641 itg2seq 24812 dvlip2 25064 mdegmullem 25148 plyco0 25258 sincosq1sgn 25560 sincosq2sgn 25561 logcj 25666 argimgt0 25672 lgseisenlem2 26429 eengtrkg 27257 eengtrkge 27258 ubthlem2 29134 minvecolem7 29146 nmcexi 30289 lnconi 30296 pjnormssi 30431 opsbc2ie 30725 qusvscpbl 31453 naddel1 33766 tan2h 35696 lindsadd 35697 itg2gt0cn 35759 divrngcl 36042 lshpcmp 36929 cdlemk35s 38878 cdlemk39s 38880 cdlemk42 38882 dihlspsnat 39274 isdomn4 40100 clcnvlem 41120 tz6.12i-afv2 44622 sqrtnegnre 44687 |
Copyright terms: Public domain | W3C validator |