![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imtr3d | Structured version Visualization version GIF version |
Description: More general version of 3imtr3i 291. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
Ref | Expression |
---|---|
3imtr3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3imtr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3imtr3d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
2 | 3imtr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 3imtr3d.3 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
4 | 2, 3 | sylibd 238 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
5 | 1, 4 | sylbird 260 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: tz6.12i 6920 f1imass 7263 focdmex 7942 tposfn2 8233 naddel1 8686 eroveu 8806 sdomel 9124 ackbij1lem16 10230 ltapr 11040 rpnnen1lem5 12965 qbtwnre 13178 om2uzlt2i 13916 m1dvdsndvds 16731 pcpremul 16776 pcaddlem 16821 pockthlem 16838 prmreclem6 16854 catidd 17624 issgrpd 18621 ghmf1 19121 gexdvds 19452 sylow1lem1 19466 lt6abl 19763 ablfacrplem 19935 drnginvrn0 20380 issrngd 20469 islssd 20546 isdomn4 20918 znrrg 21121 isphld 21207 cnllycmp 24472 nmhmcn 24636 minveclem7 24952 ioorcl2 25089 itg2seq 25260 dvlip2 25512 mdegmullem 25596 plyco0 25706 sincosq1sgn 26008 sincosq2sgn 26009 logcj 26114 argimgt0 26120 lgseisenlem2 26879 sleadd1im 27473 sleadd1 27475 sltonold 27690 eengtrkg 28275 eengtrkge 28276 ubthlem2 30155 minvecolem7 30167 nmcexi 31310 lnconi 31317 pjnormssi 31452 opsbc2ie 31747 qusvscpbl 32497 tan2h 36528 lindsadd 36529 itg2gt0cn 36591 divrngcl 36873 lshpcmp 37906 cdlemk35s 39856 cdlemk39s 39858 cdlemk42 39860 dihlspsnat 40252 clcnvlem 42422 tz6.12i-afv2 45999 sqrtnegnre 46063 |
Copyright terms: Public domain | W3C validator |