| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imtr3d | Structured version Visualization version GIF version | ||
| Description: More general version of 3imtr3i 291. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3imtr3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3imtr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3imtr3d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3imtr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 3imtr3d.3 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 4 | 2, 3 | sylibd 239 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| 5 | 1, 4 | sylbird 260 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: tz6.12i 6886 f1imass 7239 focdmex 7934 tposfn2 8227 naddel1 8651 eroveu 8785 sdomel 9088 ackbij1lem16 10187 ltapr 10998 rpnnen1lem5 12940 qbtwnre 13159 om2uzlt2i 13916 m1dvdsndvds 16769 pcpremul 16814 pcaddlem 16859 pockthlem 16876 prmreclem6 16892 catidd 17641 issgrpd 18657 ghmf1 19178 gexdvds 19514 sylow1lem1 19528 lt6abl 19825 ablfacrplem 19997 isdomn4 20625 drnginvrn0 20663 issrngd 20764 islssd 20841 znrrg 21475 isphld 21563 cnllycmp 24855 nmhmcn 25020 minveclem7 25335 ioorcl2 25473 itg2seq 25643 dvlip2 25900 mdegmullem 25983 plyco0 26097 sincosq1sgn 26407 sincosq2sgn 26408 logcj 26515 argimgt0 26521 lgseisenlem2 27287 sleadd1im 27894 sleadd1 27896 sltonold 28162 onnolt 28167 om2noseqlt2 28194 remulscllem2 28352 eengtrkg 28913 eengtrkge 28914 ubthlem2 30800 minvecolem7 30812 nmcexi 31955 lnconi 31962 pjnormssi 32097 opsbc2ie 32405 qusvscpbl 33322 tan2h 37606 lindsadd 37607 itg2gt0cn 37669 divrngcl 37951 lshpcmp 38981 cdlemk35s 40931 cdlemk39s 40933 cdlemk42 40935 dihlspsnat 41327 clcnvlem 43612 tz6.12i-afv2 47244 sqrtnegnre 47308 |
| Copyright terms: Public domain | W3C validator |