| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imtr3d | Structured version Visualization version GIF version | ||
| Description: More general version of 3imtr3i 291. Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3imtr3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3imtr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3imtr3d | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3imtr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 3imtr3d.3 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 4 | 2, 3 | sylibd 239 | . 2 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| 5 | 1, 4 | sylbird 260 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: tz6.12i 6889 f1imass 7242 focdmex 7937 tposfn2 8230 naddel1 8654 eroveu 8788 sdomel 9094 ackbij1lem16 10194 ltapr 11005 rpnnen1lem5 12947 qbtwnre 13166 om2uzlt2i 13923 m1dvdsndvds 16776 pcpremul 16821 pcaddlem 16866 pockthlem 16883 prmreclem6 16899 catidd 17648 issgrpd 18664 ghmf1 19185 gexdvds 19521 sylow1lem1 19535 lt6abl 19832 ablfacrplem 20004 isdomn4 20632 drnginvrn0 20670 issrngd 20771 islssd 20848 znrrg 21482 isphld 21570 cnllycmp 24862 nmhmcn 25027 minveclem7 25342 ioorcl2 25480 itg2seq 25650 dvlip2 25907 mdegmullem 25990 plyco0 26104 sincosq1sgn 26414 sincosq2sgn 26415 logcj 26522 argimgt0 26528 lgseisenlem2 27294 sleadd1im 27901 sleadd1 27903 sltonold 28169 onnolt 28174 om2noseqlt2 28201 remulscllem2 28359 eengtrkg 28920 eengtrkge 28921 ubthlem2 30807 minvecolem7 30819 nmcexi 31962 lnconi 31969 pjnormssi 32104 opsbc2ie 32412 qusvscpbl 33329 tan2h 37613 lindsadd 37614 itg2gt0cn 37676 divrngcl 37958 lshpcmp 38988 cdlemk35s 40938 cdlemk39s 40940 cdlemk42 40942 dihlspsnat 41334 clcnvlem 43619 tz6.12i-afv2 47248 sqrtnegnre 47312 |
| Copyright terms: Public domain | W3C validator |