![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orngring | Structured version Visualization version GIF version |
Description: An ordered ring is a ring. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
orngring | ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2772 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2772 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
3 | eqid 2772 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | eqid 2772 | . . 3 ⊢ (le‘𝑅) = (le‘𝑅) | |
5 | 1, 2, 3, 4 | isorng 30551 | . 2 ⊢ (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)(((0g‘𝑅)(le‘𝑅)𝑎 ∧ (0g‘𝑅)(le‘𝑅)𝑏) → (0g‘𝑅)(le‘𝑅)(𝑎(.r‘𝑅)𝑏)))) |
6 | 5 | simp1bi 1125 | 1 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∈ wcel 2050 ∀wral 3082 class class class wbr 4923 ‘cfv 6182 (class class class)co 6970 Basecbs 16333 .rcmulr 16416 lecple 16422 0gc0g 16563 Ringcrg 19014 oGrpcogrp 30417 oRingcorng 30547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2744 ax-nul 5061 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3676 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-iota 6146 df-fv 6190 df-ov 6973 df-orng 30549 |
This theorem is referenced by: orngsqr 30556 ornglmulle 30557 orngrmulle 30558 ornglmullt 30559 orngrmullt 30560 orngmullt 30561 orng0le1 30564 suborng 30567 isarchiofld 30569 |
Copyright terms: Public domain | W3C validator |