Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > orngring | Structured version Visualization version GIF version |
Description: An ordered ring is a ring. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
orngring | ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2737 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
3 | eqid 2737 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | eqid 2737 | . . 3 ⊢ (le‘𝑅) = (le‘𝑅) | |
5 | 1, 2, 3, 4 | isorng 31606 | . 2 ⊢ (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)(((0g‘𝑅)(le‘𝑅)𝑎 ∧ (0g‘𝑅)(le‘𝑅)𝑏) → (0g‘𝑅)(le‘𝑅)(𝑎(.r‘𝑅)𝑏)))) |
6 | 5 | simp1bi 1144 | 1 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 ∀wral 3062 class class class wbr 5085 ‘cfv 6463 (class class class)co 7313 Basecbs 16979 .rcmulr 17030 lecple 17036 0gc0g 17217 Ringcrg 19850 oGrpcogrp 31432 oRingcorng 31602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-nul 5243 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rab 3405 df-v 3443 df-sbc 3726 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-iota 6415 df-fv 6471 df-ov 7316 df-orng 31604 |
This theorem is referenced by: orngsqr 31611 ornglmulle 31612 orngrmulle 31613 ornglmullt 31614 orngrmullt 31615 orngmullt 31616 orng0le1 31619 suborng 31622 isarchiofld 31624 |
Copyright terms: Public domain | W3C validator |