Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > orngring | Structured version Visualization version GIF version |
Description: An ordered ring is a ring. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
orngring | ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2733 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
3 | eqid 2733 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | eqid 2733 | . . 3 ⊢ (le‘𝑅) = (le‘𝑅) | |
5 | 1, 2, 3, 4 | isorng 31526 | . 2 ⊢ (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)(((0g‘𝑅)(le‘𝑅)𝑎 ∧ (0g‘𝑅)(le‘𝑅)𝑏) → (0g‘𝑅)(le‘𝑅)(𝑎(.r‘𝑅)𝑏)))) |
6 | 5 | simp1bi 1143 | 1 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2101 ∀wral 3059 class class class wbr 5077 ‘cfv 6447 (class class class)co 7295 Basecbs 16940 .rcmulr 16991 lecple 16997 0gc0g 17178 Ringcrg 19811 oGrpcogrp 31352 oRingcorng 31522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2939 df-ral 3060 df-rab 3224 df-v 3436 df-sbc 3719 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-iota 6399 df-fv 6455 df-ov 7298 df-orng 31524 |
This theorem is referenced by: orngsqr 31531 ornglmulle 31532 orngrmulle 31533 ornglmullt 31534 orngrmullt 31535 orngmullt 31536 orng0le1 31539 suborng 31542 isarchiofld 31544 |
Copyright terms: Public domain | W3C validator |