MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orngring Structured version   Visualization version   GIF version

Theorem orngring 20787
Description: An ordered ring is a ring. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Assertion
Ref Expression
orngring (𝑅 ∈ oRing → 𝑅 ∈ Ring)

Proof of Theorem orngring
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2733 . . 3 (0g𝑅) = (0g𝑅)
3 eqid 2733 . . 3 (.r𝑅) = (.r𝑅)
4 eqid 2733 . . 3 (le‘𝑅) = (le‘𝑅)
51, 2, 3, 4isorng 20786 . 2 (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)(((0g𝑅)(le‘𝑅)𝑎 ∧ (0g𝑅)(le‘𝑅)𝑏) → (0g𝑅)(le‘𝑅)(𝑎(.r𝑅)𝑏))))
65simp1bi 1145 1 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  wral 3049   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17130  .rcmulr 17172  lecple 17178  0gc0g 17353  oGrpcogrp 20042  Ringcrg 20161  oRingcorng 20782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-ov 7358  df-orng 20784
This theorem is referenced by:  orngsqr  20791  ornglmulle  20792  orngrmulle  20793  ornglmullt  20794  orngrmullt  20795  orngmullt  20796  orng0le1  20799  suborng  20801  isarchiofld  33179
  Copyright terms: Public domain W3C validator