Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orngring Structured version   Visualization version   GIF version

Theorem orngring 32459
Description: An ordered ring is a ring. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Assertion
Ref Expression
orngring (𝑅 ∈ oRing β†’ 𝑅 ∈ Ring)

Proof of Theorem orngring
Dummy variables π‘Ž 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . 3 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
2 eqid 2732 . . 3 (0gβ€˜π‘…) = (0gβ€˜π‘…)
3 eqid 2732 . . 3 (.rβ€˜π‘…) = (.rβ€˜π‘…)
4 eqid 2732 . . 3 (leβ€˜π‘…) = (leβ€˜π‘…)
51, 2, 3, 4isorng 32458 . 2 (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ βˆ€π‘Ž ∈ (Baseβ€˜π‘…)βˆ€π‘ ∈ (Baseβ€˜π‘…)(((0gβ€˜π‘…)(leβ€˜π‘…)π‘Ž ∧ (0gβ€˜π‘…)(leβ€˜π‘…)𝑏) β†’ (0gβ€˜π‘…)(leβ€˜π‘…)(π‘Ž(.rβ€˜π‘…)𝑏))))
65simp1bi 1145 1 (𝑅 ∈ oRing β†’ 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∈ wcel 2106  βˆ€wral 3061   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7411  Basecbs 17146  .rcmulr 17200  lecple 17206  0gc0g 17387  Ringcrg 20058  oGrpcogrp 32257  oRingcorng 32454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7414  df-orng 32456
This theorem is referenced by:  orngsqr  32463  ornglmulle  32464  orngrmulle  32465  ornglmullt  32466  orngrmullt  32467  orngmullt  32468  orng0le1  32471  suborng  32474  isarchiofld  32476
  Copyright terms: Public domain W3C validator