| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orngring | Structured version Visualization version GIF version | ||
| Description: An ordered ring is a ring. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| Ref | Expression |
|---|---|
| orngring | ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2730 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 3 | eqid 2730 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 4 | eqid 2730 | . . 3 ⊢ (le‘𝑅) = (le‘𝑅) | |
| 5 | 1, 2, 3, 4 | isorng 20769 | . 2 ⊢ (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)(((0g‘𝑅)(le‘𝑅)𝑎 ∧ (0g‘𝑅)(le‘𝑅)𝑏) → (0g‘𝑅)(le‘𝑅)(𝑎(.r‘𝑅)𝑏)))) |
| 6 | 5 | simp1bi 1145 | 1 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2110 ∀wral 3045 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 .rcmulr 17154 lecple 17160 0gc0g 17335 oGrpcogrp 20025 Ringcrg 20144 oRingcorng 20765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-iota 6433 df-fv 6485 df-ov 7344 df-orng 20767 |
| This theorem is referenced by: orngsqr 20774 ornglmulle 20775 orngrmulle 20776 ornglmullt 20777 orngrmullt 20778 orngmullt 20779 orng0le1 20782 suborng 20784 isarchiofld 33158 |
| Copyright terms: Public domain | W3C validator |