Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orngring Structured version   Visualization version   GIF version

Theorem orngring 33310
Description: An ordered ring is a ring. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Assertion
Ref Expression
orngring (𝑅 ∈ oRing → 𝑅 ∈ Ring)

Proof of Theorem orngring
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2735 . . 3 (0g𝑅) = (0g𝑅)
3 eqid 2735 . . 3 (.r𝑅) = (.r𝑅)
4 eqid 2735 . . 3 (le‘𝑅) = (le‘𝑅)
51, 2, 3, 4isorng 33309 . 2 (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)(((0g𝑅)(le‘𝑅)𝑎 ∧ (0g𝑅)(le‘𝑅)𝑏) → (0g𝑅)(le‘𝑅)(𝑎(.r𝑅)𝑏))))
65simp1bi 1144 1 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  wral 3059   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  .rcmulr 17299  lecple 17305  0gc0g 17486  Ringcrg 20251  oGrpcogrp 33058  oRingcorng 33305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-orng 33307
This theorem is referenced by:  orngsqr  33314  ornglmulle  33315  orngrmulle  33316  ornglmullt  33317  orngrmullt  33318  orngmullt  33319  orng0le1  33322  suborng  33325  isarchiofld  33327
  Copyright terms: Public domain W3C validator