| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orngring | Structured version Visualization version GIF version | ||
| Description: An ordered ring is a ring. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| Ref | Expression |
|---|---|
| orngring | ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2737 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 3 | eqid 2737 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 4 | eqid 2737 | . . 3 ⊢ (le‘𝑅) = (le‘𝑅) | |
| 5 | 1, 2, 3, 4 | isorng 33329 | . 2 ⊢ (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)(((0g‘𝑅)(le‘𝑅)𝑎 ∧ (0g‘𝑅)(le‘𝑅)𝑏) → (0g‘𝑅)(le‘𝑅)(𝑎(.r‘𝑅)𝑏)))) |
| 6 | 5 | simp1bi 1146 | 1 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3061 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 .rcmulr 17298 lecple 17304 0gc0g 17484 Ringcrg 20230 oGrpcogrp 33075 oRingcorng 33325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-nul 5306 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-ov 7434 df-orng 33327 |
| This theorem is referenced by: orngsqr 33334 ornglmulle 33335 orngrmulle 33336 ornglmullt 33337 orngrmullt 33338 orngmullt 33339 orng0le1 33342 suborng 33345 isarchiofld 33347 |
| Copyright terms: Public domain | W3C validator |