MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orngring Structured version   Visualization version   GIF version

Theorem orngring 20770
Description: An ordered ring is a ring. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Assertion
Ref Expression
orngring (𝑅 ∈ oRing → 𝑅 ∈ Ring)

Proof of Theorem orngring
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2730 . . 3 (0g𝑅) = (0g𝑅)
3 eqid 2730 . . 3 (.r𝑅) = (.r𝑅)
4 eqid 2730 . . 3 (le‘𝑅) = (le‘𝑅)
51, 2, 3, 4isorng 20769 . 2 (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)(((0g𝑅)(le‘𝑅)𝑎 ∧ (0g𝑅)(le‘𝑅)𝑏) → (0g𝑅)(le‘𝑅)(𝑎(.r𝑅)𝑏))))
65simp1bi 1145 1 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2110  wral 3045   class class class wbr 5089  cfv 6477  (class class class)co 7341  Basecbs 17112  .rcmulr 17154  lecple 17160  0gc0g 17335  oGrpcogrp 20025  Ringcrg 20144  oRingcorng 20765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-iota 6433  df-fv 6485  df-ov 7344  df-orng 20767
This theorem is referenced by:  orngsqr  20774  ornglmulle  20775  orngrmulle  20776  ornglmullt  20777  orngrmullt  20778  orngmullt  20779  orng0le1  20782  suborng  20784  isarchiofld  33158
  Copyright terms: Public domain W3C validator