![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orngring | Structured version Visualization version GIF version |
Description: An ordered ring is a ring. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
orngring | β’ (π β oRing β π β Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 β’ (Baseβπ ) = (Baseβπ ) | |
2 | eqid 2732 | . . 3 β’ (0gβπ ) = (0gβπ ) | |
3 | eqid 2732 | . . 3 β’ (.rβπ ) = (.rβπ ) | |
4 | eqid 2732 | . . 3 β’ (leβπ ) = (leβπ ) | |
5 | 1, 2, 3, 4 | isorng 32458 | . 2 β’ (π β oRing β (π β Ring β§ π β oGrp β§ βπ β (Baseβπ )βπ β (Baseβπ )(((0gβπ )(leβπ )π β§ (0gβπ )(leβπ )π) β (0gβπ )(leβπ )(π(.rβπ )π)))) |
6 | 5 | simp1bi 1145 | 1 β’ (π β oRing β π β Ring) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β wcel 2106 βwral 3061 class class class wbr 5148 βcfv 6543 (class class class)co 7411 Basecbs 17146 .rcmulr 17200 lecple 17206 0gc0g 17387 Ringcrg 20058 oGrpcogrp 32257 oRingcorng 32454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7414 df-orng 32456 |
This theorem is referenced by: orngsqr 32463 ornglmulle 32464 orngrmulle 32465 ornglmullt 32466 orngrmullt 32467 orngmullt 32468 orng0le1 32471 suborng 32474 isarchiofld 32476 |
Copyright terms: Public domain | W3C validator |