![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orngring | Structured version Visualization version GIF version |
Description: An ordered ring is a ring. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
orngring | ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2735 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
3 | eqid 2735 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | eqid 2735 | . . 3 ⊢ (le‘𝑅) = (le‘𝑅) | |
5 | 1, 2, 3, 4 | isorng 33309 | . 2 ⊢ (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)(((0g‘𝑅)(le‘𝑅)𝑎 ∧ (0g‘𝑅)(le‘𝑅)𝑏) → (0g‘𝑅)(le‘𝑅)(𝑎(.r‘𝑅)𝑏)))) |
6 | 5 | simp1bi 1144 | 1 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ∀wral 3059 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 .rcmulr 17299 lecple 17305 0gc0g 17486 Ringcrg 20251 oGrpcogrp 33058 oRingcorng 33305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-orng 33307 |
This theorem is referenced by: orngsqr 33314 ornglmulle 33315 orngrmulle 33316 ornglmullt 33317 orngrmullt 33318 orngmullt 33319 orng0le1 33322 suborng 33325 isarchiofld 33327 |
Copyright terms: Public domain | W3C validator |