Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orngring Structured version   Visualization version   GIF version

Theorem orngring 33330
Description: An ordered ring is a ring. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Assertion
Ref Expression
orngring (𝑅 ∈ oRing → 𝑅 ∈ Ring)

Proof of Theorem orngring
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2737 . . 3 (0g𝑅) = (0g𝑅)
3 eqid 2737 . . 3 (.r𝑅) = (.r𝑅)
4 eqid 2737 . . 3 (le‘𝑅) = (le‘𝑅)
51, 2, 3, 4isorng 33329 . 2 (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)(((0g𝑅)(le‘𝑅)𝑎 ∧ (0g𝑅)(le‘𝑅)𝑏) → (0g𝑅)(le‘𝑅)(𝑎(.r𝑅)𝑏))))
65simp1bi 1146 1 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3061   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  .rcmulr 17298  lecple 17304  0gc0g 17484  Ringcrg 20230  oGrpcogrp 33075  oRingcorng 33325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-orng 33327
This theorem is referenced by:  orngsqr  33334  ornglmulle  33335  orngrmulle  33336  ornglmullt  33337  orngrmullt  33338  orngmullt  33339  orng0le1  33342  suborng  33345  isarchiofld  33347
  Copyright terms: Public domain W3C validator