Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6d Structured version   Visualization version   GIF version

Theorem hdmap1l6d 38982
Description: Lemmma for hdmap1l6 38990. (Contributed by NM, 1-May-2015.)
Hypotheses
Ref Expression
hdmap1l6.h 𝐻 = (LHyp‘𝐾)
hdmap1l6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1l6.v 𝑉 = (Base‘𝑈)
hdmap1l6.p + = (+g𝑈)
hdmap1l6.s = (-g𝑈)
hdmap1l6c.o 0 = (0g𝑈)
hdmap1l6.n 𝑁 = (LSpan‘𝑈)
hdmap1l6.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1l6.d 𝐷 = (Base‘𝐶)
hdmap1l6.a = (+g𝐶)
hdmap1l6.r 𝑅 = (-g𝐶)
hdmap1l6.q 𝑄 = (0g𝐶)
hdmap1l6.l 𝐿 = (LSpan‘𝐶)
hdmap1l6.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1l6.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1l6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1l6.f (𝜑𝐹𝐷)
hdmap1l6cl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1l6.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
hdmap1l6d.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
hdmap1l6d.yz (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
hdmap1l6d.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
hdmap1l6d.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
hdmap1l6d.w (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
hdmap1l6d.wn (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
hdmap1l6d (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)))

Proof of Theorem hdmap1l6d
StepHypRef Expression
1 hdmap1l6.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 hdmap1l6.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 hdmap1l6.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 38761 . . . . 5 (𝜑𝐶 ∈ LMod)
5 hdmap1l6.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 hdmap1l6.v . . . . . 6 𝑉 = (Base‘𝑈)
7 hdmap1l6c.o . . . . . 6 0 = (0g𝑈)
8 hdmap1l6.n . . . . . 6 𝑁 = (LSpan‘𝑈)
9 hdmap1l6.d . . . . . 6 𝐷 = (Base‘𝐶)
10 hdmap1l6.l . . . . . 6 𝐿 = (LSpan‘𝐶)
11 hdmap1l6.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
12 hdmap1l6.i . . . . . 6 𝐼 = ((HDMap1‘𝐾)‘𝑊)
13 hdmap1l6.f . . . . . 6 (𝜑𝐹𝐷)
14 hdmap1l6.mn . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
151, 5, 3dvhlvec 38278 . . . . . . . . 9 (𝜑𝑈 ∈ LVec)
16 hdmap1l6d.w . . . . . . . . . 10 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
1716eldifad 3924 . . . . . . . . 9 (𝜑𝑤𝑉)
18 hdmap1l6cl.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
1918eldifad 3924 . . . . . . . . 9 (𝜑𝑋𝑉)
20 hdmap1l6d.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
2120eldifad 3924 . . . . . . . . 9 (𝜑𝑌𝑉)
22 hdmap1l6d.wn . . . . . . . . 9 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
236, 8, 15, 17, 19, 21, 22lspindpi 19877 . . . . . . . 8 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})))
2423simpld 497 . . . . . . 7 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}))
2524necomd 3061 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤}))
261, 5, 6, 7, 8, 2, 9, 10, 11, 12, 3, 13, 14, 25, 18, 17hdmap1cl 38973 . . . . 5 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ∈ 𝐷)
27 hdmap1l6.a . . . . . 6 = (+g𝐶)
28 hdmap1l6.q . . . . . 6 𝑄 = (0g𝐶)
299, 27, 28lmod0vrid 19638 . . . . 5 ((𝐶 ∈ LMod ∧ (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ∈ 𝐷) → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) 𝑄) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
304, 26, 29syl2anc 586 . . . 4 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) 𝑄) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
3130adantr 483 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) 𝑄) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
32 oteq3 4788 . . . . . 6 ((𝑌 + 𝑍) = 0 → ⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩ = ⟨𝑋, 𝐹, 0 ⟩)
3332fveq2d 6648 . . . . 5 ((𝑌 + 𝑍) = 0 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = (𝐼‘⟨𝑋, 𝐹, 0 ⟩))
341, 5, 6, 7, 2, 9, 28, 12, 3, 13, 19hdmap1val0 38968 . . . . 5 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = 𝑄)
3533, 34sylan9eqr 2877 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = 𝑄)
3635oveq2d 7147 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) 𝑄))
37 oveq2 7139 . . . . . 6 ((𝑌 + 𝑍) = 0 → (𝑤 + (𝑌 + 𝑍)) = (𝑤 + 0 ))
381, 5, 3dvhlmod 38279 . . . . . . 7 (𝜑𝑈 ∈ LMod)
39 hdmap1l6.p . . . . . . . 8 + = (+g𝑈)
406, 39, 7lmod0vrid 19638 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑤𝑉) → (𝑤 + 0 ) = 𝑤)
4138, 17, 40syl2anc 586 . . . . . 6 (𝜑 → (𝑤 + 0 ) = 𝑤)
4237, 41sylan9eqr 2877 . . . . 5 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑤 + (𝑌 + 𝑍)) = 𝑤)
4342oteq3d 4791 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩ = ⟨𝑋, 𝐹, 𝑤⟩)
4443fveq2d 6648 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
4531, 36, 443eqtr4rd 2866 . 2 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)))
46 hdmap1l6.s . . 3 = (-g𝑈)
47 hdmap1l6.r . . 3 𝑅 = (-g𝐶)
483adantr 483 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4913adantr 483 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝐹𝐷)
5018adantr 483 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
5114adantr 483 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
5216adantr 483 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑤 ∈ (𝑉 ∖ { 0 }))
53 hdmap1l6d.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
5453eldifad 3924 . . . . . 6 (𝜑𝑍𝑉)
556, 39lmodvacl 19621 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
5638, 21, 54, 55syl3anc 1367 . . . . 5 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
5756anim1i 616 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 ))
58 eldifsn 4693 . . . 4 ((𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 ))
5957, 58sylibr 236 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }))
60 hdmap1l6d.yz . . . . . . 7 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
61 hdmap1l6d.xn . . . . . . . . 9 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
626, 8, 15, 19, 21, 54, 61lspindpi 19877 . . . . . . . 8 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
6362simpld 497 . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
646, 39, 7, 8, 15, 18, 20, 53, 16, 60, 63, 22mapdindp1 38889 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
656, 39, 7, 8, 15, 18, 20, 53, 16, 60, 63, 22mapdindp2 38890 . . . . . 6 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)}))
666, 7, 8, 15, 18, 56, 17, 64, 65lspindp1 19878 . . . . 5 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑤, (𝑌 + 𝑍)})))
6766simprd 498 . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑤, (𝑌 + 𝑍)}))
6867adantr 483 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ¬ 𝑋 ∈ (𝑁‘{𝑤, (𝑌 + 𝑍)}))
6923simprd 498 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
706, 7, 8, 15, 16, 21, 69lspsnne1 19862 . . . . . . . 8 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑌}))
71 eqid 2820 . . . . . . . . . 10 (LSSum‘𝑈) = (LSSum‘𝑈)
726, 8, 71, 38, 21, 54lsmpr 19834 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑌, 𝑍}) = ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})))
7360oveq2d 7147 . . . . . . . . 9 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑌})) = ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})))
74 eqid 2820 . . . . . . . . . . . . 13 (LSubSp‘𝑈) = (LSubSp‘𝑈)
756, 74, 8lspsncl 19722 . . . . . . . . . . . 12 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
7638, 21, 75syl2anc 586 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
7774lsssubg 19702 . . . . . . . . . . 11 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑈))
7838, 76, 77syl2anc 586 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑈))
7971lsmidm 18764 . . . . . . . . . 10 ((𝑁‘{𝑌}) ∈ (SubGrp‘𝑈) → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑌})) = (𝑁‘{𝑌}))
8078, 79syl 17 . . . . . . . . 9 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑌})) = (𝑁‘{𝑌}))
8172, 73, 803eqtr2d 2861 . . . . . . . 8 (𝜑 → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑌}))
8270, 81neleqtrrd 2933 . . . . . . 7 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑍}))
836, 39, 8, 38, 21, 54, 17, 82lspindp4 19882 . . . . . 6 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑌, (𝑌 + 𝑍)}))
846, 8, 15, 17, 21, 56, 83lspindpi 19877 . . . . 5 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)})))
8584simprd 498 . . . 4 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
8685adantr 483 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
87 eqidd 2821 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
88 eqidd 2821 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩))
891, 5, 6, 39, 46, 7, 8, 2, 9, 27, 47, 28, 10, 11, 12, 48, 49, 50, 51, 52, 59, 68, 86, 87, 88hdmap1l6a 38978 . 2 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)))
9045, 89pm2.61dane 3093 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3006  cdif 3909  {csn 4541  {cpr 4543  cotp 4549  cfv 6329  (class class class)co 7131  Basecbs 16459  +gcplusg 16541  0gc0g 16689  -gcsg 18081  SubGrpcsubg 18249  LSSumclsm 18735  LModclmod 19607  LSubSpclss 19676  LSpanclspn 19716  HLchlt 36519  LHypclh 37153  DVecHcdvh 38247  LCDualclcd 38755  mapdcmpd 38793  HDMap1chdma1 38960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5240  ax-pr 5304  ax-un 7437  ax-cnex 10569  ax-resscn 10570  ax-1cn 10571  ax-icn 10572  ax-addcl 10573  ax-addrcl 10574  ax-mulcl 10575  ax-mulrcl 10576  ax-mulcom 10577  ax-addass 10578  ax-mulass 10579  ax-distr 10580  ax-i2m1 10581  ax-1ne0 10582  ax-1rid 10583  ax-rnegex 10584  ax-rrecex 10585  ax-cnre 10586  ax-pre-lttri 10587  ax-pre-lttrn 10588  ax-pre-ltadd 10589  ax-pre-mulgt0 10590  ax-riotaBAD 36122
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3752  df-csb 3860  df-dif 3915  df-un 3917  df-in 3919  df-ss 3928  df-pss 3930  df-nul 4268  df-if 4442  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-ot 4550  df-uni 4813  df-int 4851  df-iun 4895  df-iin 4896  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5434  df-eprel 5439  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6122  df-ord 6168  df-on 6169  df-lim 6170  df-suc 6171  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-riota 7089  df-ov 7134  df-oprab 7135  df-mpo 7136  df-of 7385  df-om 7557  df-1st 7665  df-2nd 7666  df-tpos 7868  df-undef 7915  df-wrecs 7923  df-recs 7984  df-rdg 8022  df-1o 8078  df-oadd 8082  df-er 8265  df-map 8384  df-en 8486  df-dom 8487  df-sdom 8488  df-fin 8489  df-pnf 10653  df-mnf 10654  df-xr 10655  df-ltxr 10656  df-le 10657  df-sub 10848  df-neg 10849  df-nn 11615  df-2 11677  df-3 11678  df-4 11679  df-5 11680  df-6 11681  df-n0 11875  df-z 11959  df-uz 12221  df-fz 12875  df-struct 16461  df-ndx 16462  df-slot 16463  df-base 16465  df-sets 16466  df-ress 16467  df-plusg 16554  df-mulr 16555  df-sca 16557  df-vsca 16558  df-0g 16691  df-mre 16833  df-mrc 16834  df-acs 16836  df-proset 17514  df-poset 17532  df-plt 17544  df-lub 17560  df-glb 17561  df-join 17562  df-meet 17563  df-p0 17625  df-p1 17626  df-lat 17632  df-clat 17694  df-mgm 17828  df-sgrp 17877  df-mnd 17888  df-submnd 17933  df-grp 18082  df-minusg 18083  df-sbg 18084  df-subg 18252  df-cntz 18423  df-oppg 18450  df-lsm 18737  df-cmn 18884  df-abl 18885  df-mgp 19216  df-ur 19228  df-ring 19275  df-oppr 19349  df-dvdsr 19367  df-unit 19368  df-invr 19398  df-dvr 19409  df-drng 19477  df-lmod 19609  df-lss 19677  df-lsp 19717  df-lvec 19848  df-lsatoms 36145  df-lshyp 36146  df-lcv 36188  df-lfl 36227  df-lkr 36255  df-ldual 36293  df-oposet 36345  df-ol 36347  df-oml 36348  df-covers 36435  df-ats 36436  df-atl 36467  df-cvlat 36491  df-hlat 36520  df-llines 36667  df-lplanes 36668  df-lvols 36669  df-lines 36670  df-psubsp 36672  df-pmap 36673  df-padd 36965  df-lhyp 37157  df-laut 37158  df-ldil 37273  df-ltrn 37274  df-trl 37328  df-tgrp 37912  df-tendo 37924  df-edring 37926  df-dveca 38172  df-disoa 38198  df-dvech 38248  df-dib 38308  df-dic 38342  df-dih 38398  df-doch 38517  df-djh 38564  df-lcdual 38756  df-mapd 38794  df-hdmap1 38962
This theorem is referenced by:  hdmap1l6g  38985
  Copyright terms: Public domain W3C validator