Proof of Theorem hdmap1l6d
| Step | Hyp | Ref
| Expression |
| 1 | | hdmap1l6.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
| 2 | | hdmap1l6.c |
. . . . . 6
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| 3 | | hdmap1l6.k |
. . . . . 6
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 4 | 1, 2, 3 | lcdlmod 41594 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ LMod) |
| 5 | | hdmap1l6.u |
. . . . . 6
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 6 | | hdmap1l6.v |
. . . . . 6
⊢ 𝑉 = (Base‘𝑈) |
| 7 | | hdmap1l6c.o |
. . . . . 6
⊢ 0 =
(0g‘𝑈) |
| 8 | | hdmap1l6.n |
. . . . . 6
⊢ 𝑁 = (LSpan‘𝑈) |
| 9 | | hdmap1l6.d |
. . . . . 6
⊢ 𝐷 = (Base‘𝐶) |
| 10 | | hdmap1l6.l |
. . . . . 6
⊢ 𝐿 = (LSpan‘𝐶) |
| 11 | | hdmap1l6.m |
. . . . . 6
⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| 12 | | hdmap1l6.i |
. . . . . 6
⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
| 13 | | hdmap1l6.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| 14 | | hdmap1l6.mn |
. . . . . 6
⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) |
| 15 | 1, 5, 3 | dvhlvec 41111 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ LVec) |
| 16 | | hdmap1l6d.w |
. . . . . . . . . 10
⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) |
| 17 | 16 | eldifad 3963 |
. . . . . . . . 9
⊢ (𝜑 → 𝑤 ∈ 𝑉) |
| 18 | | hdmap1l6cl.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 19 | 18 | eldifad 3963 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 20 | | hdmap1l6d.y |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 21 | 20 | eldifad 3963 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 22 | | hdmap1l6d.wn |
. . . . . . . . 9
⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
| 23 | 6, 8, 15, 17, 19, 21, 22 | lspindpi 21134 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))) |
| 24 | 23 | simpld 494 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋})) |
| 25 | 24 | necomd 2996 |
. . . . . 6
⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤})) |
| 26 | 1, 5, 6, 7, 8, 2, 9, 10, 11, 12, 3, 13, 14, 25, 18, 17 | hdmap1cl 41806 |
. . . . 5
⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑤〉) ∈ 𝐷) |
| 27 | | hdmap1l6.a |
. . . . . 6
⊢ ✚ =
(+g‘𝐶) |
| 28 | | hdmap1l6.q |
. . . . . 6
⊢ 𝑄 = (0g‘𝐶) |
| 29 | 9, 27, 28 | lmod0vrid 20891 |
. . . . 5
⊢ ((𝐶 ∈ LMod ∧ (𝐼‘〈𝑋, 𝐹, 𝑤〉) ∈ 𝐷) → ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ 𝑄) = (𝐼‘〈𝑋, 𝐹, 𝑤〉)) |
| 30 | 4, 26, 29 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ 𝑄) = (𝐼‘〈𝑋, 𝐹, 𝑤〉)) |
| 31 | 30 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ 𝑄) = (𝐼‘〈𝑋, 𝐹, 𝑤〉)) |
| 32 | | oteq3 4884 |
. . . . . 6
⊢ ((𝑌 + 𝑍) = 0 → 〈𝑋, 𝐹, (𝑌 + 𝑍)〉 = 〈𝑋, 𝐹, 0 〉) |
| 33 | 32 | fveq2d 6910 |
. . . . 5
⊢ ((𝑌 + 𝑍) = 0 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = (𝐼‘〈𝑋, 𝐹, 0 〉)) |
| 34 | 1, 5, 6, 7, 2, 9, 28, 12, 3, 13, 19 | hdmap1val0 41801 |
. . . . 5
⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) |
| 35 | 33, 34 | sylan9eqr 2799 |
. . . 4
⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = 𝑄) |
| 36 | 35 | oveq2d 7447 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉)) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ 𝑄)) |
| 37 | | oveq2 7439 |
. . . . . 6
⊢ ((𝑌 + 𝑍) = 0 → (𝑤 + (𝑌 + 𝑍)) = (𝑤 + 0 )) |
| 38 | 1, 5, 3 | dvhlmod 41112 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ LMod) |
| 39 | | hdmap1l6.p |
. . . . . . . 8
⊢ + =
(+g‘𝑈) |
| 40 | 6, 39, 7 | lmod0vrid 20891 |
. . . . . . 7
⊢ ((𝑈 ∈ LMod ∧ 𝑤 ∈ 𝑉) → (𝑤 + 0 ) = 𝑤) |
| 41 | 38, 17, 40 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝑤 + 0 ) = 𝑤) |
| 42 | 37, 41 | sylan9eqr 2799 |
. . . . 5
⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑤 + (𝑌 + 𝑍)) = 𝑤) |
| 43 | 42 | oteq3d 4887 |
. . . 4
⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → 〈𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))〉 = 〈𝑋, 𝐹, 𝑤〉) |
| 44 | 43 | fveq2d 6910 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝐼‘〈𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))〉) = (𝐼‘〈𝑋, 𝐹, 𝑤〉)) |
| 45 | 31, 36, 44 | 3eqtr4rd 2788 |
. 2
⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝐼‘〈𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))〉) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉))) |
| 46 | | hdmap1l6.s |
. . 3
⊢ − =
(-g‘𝑈) |
| 47 | | hdmap1l6.r |
. . 3
⊢ 𝑅 = (-g‘𝐶) |
| 48 | 3 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 49 | 13 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝐹 ∈ 𝐷) |
| 50 | 18 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 51 | 14 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) |
| 52 | 16 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑤 ∈ (𝑉 ∖ { 0 })) |
| 53 | | hdmap1l6d.z |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| 54 | 53 | eldifad 3963 |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| 55 | 6, 39 | lmodvacl 20873 |
. . . . . 6
⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → (𝑌 + 𝑍) ∈ 𝑉) |
| 56 | 38, 21, 54, 55 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → (𝑌 + 𝑍) ∈ 𝑉) |
| 57 | 56 | anim1i 615 |
. . . 4
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 )) |
| 58 | | eldifsn 4786 |
. . . 4
⊢ ((𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 )) |
| 59 | 57, 58 | sylibr 234 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 })) |
| 60 | | hdmap1l6d.yz |
. . . . . . 7
⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) |
| 61 | | hdmap1l6d.xn |
. . . . . . . . 9
⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
| 62 | 6, 8, 15, 19, 21, 54, 61 | lspindpi 21134 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))) |
| 63 | 62 | simpld 494 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 64 | 6, 39, 7, 8, 15, 18, 20, 53, 16, 60, 63, 22 | mapdindp1 41722 |
. . . . . 6
⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
| 65 | 6, 39, 7, 8, 15, 18, 20, 53, 16, 60, 63, 22 | mapdindp2 41723 |
. . . . . 6
⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)})) |
| 66 | 6, 7, 8, 15, 18, 56, 17, 64, 65 | lspindp1 21135 |
. . . . 5
⊢ (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑤, (𝑌 + 𝑍)}))) |
| 67 | 66 | simprd 495 |
. . . 4
⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑤, (𝑌 + 𝑍)})) |
| 68 | 67 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ¬ 𝑋 ∈ (𝑁‘{𝑤, (𝑌 + 𝑍)})) |
| 69 | 23 | simprd 495 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})) |
| 70 | 6, 7, 8, 15, 16, 21, 69 | lspsnne1 21119 |
. . . . . . . 8
⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑌})) |
| 71 | | eqid 2737 |
. . . . . . . . . 10
⊢
(LSSum‘𝑈) =
(LSSum‘𝑈) |
| 72 | 6, 8, 71, 38, 21, 54 | lsmpr 21088 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁‘{𝑌, 𝑍}) = ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) |
| 73 | 60 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑌})) = ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) |
| 74 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
| 75 | 6, 74, 8 | lspsncl 20975 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
| 76 | 38, 21, 75 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
| 77 | 74 | lsssubg 20955 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑈)) |
| 78 | 38, 76, 77 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑈)) |
| 79 | 71 | lsmidm 19681 |
. . . . . . . . . 10
⊢ ((𝑁‘{𝑌}) ∈ (SubGrp‘𝑈) → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑌})) = (𝑁‘{𝑌})) |
| 80 | 78, 79 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑌})) = (𝑁‘{𝑌})) |
| 81 | 72, 73, 80 | 3eqtr2d 2783 |
. . . . . . . 8
⊢ (𝜑 → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑌})) |
| 82 | 70, 81 | neleqtrrd 2864 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑍})) |
| 83 | 6, 39, 8, 38, 21, 54, 17, 82 | lspindp4 21139 |
. . . . . 6
⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑌, (𝑌 + 𝑍)})) |
| 84 | 6, 8, 15, 17, 21, 56, 83 | lspindpi 21134 |
. . . . 5
⊢ (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)}))) |
| 85 | 84 | simprd 495 |
. . . 4
⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
| 86 | 85 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
| 87 | | eqidd 2738 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐼‘〈𝑋, 𝐹, 𝑤〉) = (𝐼‘〈𝑋, 𝐹, 𝑤〉)) |
| 88 | | eqidd 2738 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉)) |
| 89 | 1, 5, 6, 39, 46, 7, 8, 2, 9, 27, 47, 28, 10, 11, 12, 48, 49, 50, 51, 52, 59, 68, 86, 87, 88 | hdmap1l6a 41811 |
. 2
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐼‘〈𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))〉) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉))) |
| 90 | 45, 89 | pm2.61dane 3029 |
1
⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))〉) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉))) |