Proof of Theorem hdmap1l6d
Step | Hyp | Ref
| Expression |
1 | | hdmap1l6.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | hdmap1l6.c |
. . . . . 6
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
3 | | hdmap1l6.k |
. . . . . 6
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
4 | 1, 2, 3 | lcdlmod 39533 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ LMod) |
5 | | hdmap1l6.u |
. . . . . 6
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
6 | | hdmap1l6.v |
. . . . . 6
⊢ 𝑉 = (Base‘𝑈) |
7 | | hdmap1l6c.o |
. . . . . 6
⊢ 0 =
(0g‘𝑈) |
8 | | hdmap1l6.n |
. . . . . 6
⊢ 𝑁 = (LSpan‘𝑈) |
9 | | hdmap1l6.d |
. . . . . 6
⊢ 𝐷 = (Base‘𝐶) |
10 | | hdmap1l6.l |
. . . . . 6
⊢ 𝐿 = (LSpan‘𝐶) |
11 | | hdmap1l6.m |
. . . . . 6
⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
12 | | hdmap1l6.i |
. . . . . 6
⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
13 | | hdmap1l6.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝐷) |
14 | | hdmap1l6.mn |
. . . . . 6
⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) |
15 | 1, 5, 3 | dvhlvec 39050 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ LVec) |
16 | | hdmap1l6d.w |
. . . . . . . . . 10
⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) |
17 | 16 | eldifad 3895 |
. . . . . . . . 9
⊢ (𝜑 → 𝑤 ∈ 𝑉) |
18 | | hdmap1l6cl.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
19 | 18 | eldifad 3895 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
20 | | hdmap1l6d.y |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
21 | 20 | eldifad 3895 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
22 | | hdmap1l6d.wn |
. . . . . . . . 9
⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
23 | 6, 8, 15, 17, 19, 21, 22 | lspindpi 20309 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))) |
24 | 23 | simpld 494 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋})) |
25 | 24 | necomd 2998 |
. . . . . 6
⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤})) |
26 | 1, 5, 6, 7, 8, 2, 9, 10, 11, 12, 3, 13, 14, 25, 18, 17 | hdmap1cl 39745 |
. . . . 5
⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑤〉) ∈ 𝐷) |
27 | | hdmap1l6.a |
. . . . . 6
⊢ ✚ =
(+g‘𝐶) |
28 | | hdmap1l6.q |
. . . . . 6
⊢ 𝑄 = (0g‘𝐶) |
29 | 9, 27, 28 | lmod0vrid 20069 |
. . . . 5
⊢ ((𝐶 ∈ LMod ∧ (𝐼‘〈𝑋, 𝐹, 𝑤〉) ∈ 𝐷) → ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ 𝑄) = (𝐼‘〈𝑋, 𝐹, 𝑤〉)) |
30 | 4, 26, 29 | syl2anc 583 |
. . . 4
⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ 𝑄) = (𝐼‘〈𝑋, 𝐹, 𝑤〉)) |
31 | 30 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ 𝑄) = (𝐼‘〈𝑋, 𝐹, 𝑤〉)) |
32 | | oteq3 4812 |
. . . . . 6
⊢ ((𝑌 + 𝑍) = 0 → 〈𝑋, 𝐹, (𝑌 + 𝑍)〉 = 〈𝑋, 𝐹, 0 〉) |
33 | 32 | fveq2d 6760 |
. . . . 5
⊢ ((𝑌 + 𝑍) = 0 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = (𝐼‘〈𝑋, 𝐹, 0 〉)) |
34 | 1, 5, 6, 7, 2, 9, 28, 12, 3, 13, 19 | hdmap1val0 39740 |
. . . . 5
⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) |
35 | 33, 34 | sylan9eqr 2801 |
. . . 4
⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = 𝑄) |
36 | 35 | oveq2d 7271 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉)) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ 𝑄)) |
37 | | oveq2 7263 |
. . . . . 6
⊢ ((𝑌 + 𝑍) = 0 → (𝑤 + (𝑌 + 𝑍)) = (𝑤 + 0 )) |
38 | 1, 5, 3 | dvhlmod 39051 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ LMod) |
39 | | hdmap1l6.p |
. . . . . . . 8
⊢ + =
(+g‘𝑈) |
40 | 6, 39, 7 | lmod0vrid 20069 |
. . . . . . 7
⊢ ((𝑈 ∈ LMod ∧ 𝑤 ∈ 𝑉) → (𝑤 + 0 ) = 𝑤) |
41 | 38, 17, 40 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝑤 + 0 ) = 𝑤) |
42 | 37, 41 | sylan9eqr 2801 |
. . . . 5
⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑤 + (𝑌 + 𝑍)) = 𝑤) |
43 | 42 | oteq3d 4815 |
. . . 4
⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → 〈𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))〉 = 〈𝑋, 𝐹, 𝑤〉) |
44 | 43 | fveq2d 6760 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝐼‘〈𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))〉) = (𝐼‘〈𝑋, 𝐹, 𝑤〉)) |
45 | 31, 36, 44 | 3eqtr4rd 2789 |
. 2
⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝐼‘〈𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))〉) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉))) |
46 | | hdmap1l6.s |
. . 3
⊢ − =
(-g‘𝑈) |
47 | | hdmap1l6.r |
. . 3
⊢ 𝑅 = (-g‘𝐶) |
48 | 3 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
49 | 13 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝐹 ∈ 𝐷) |
50 | 18 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
51 | 14 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) |
52 | 16 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑤 ∈ (𝑉 ∖ { 0 })) |
53 | | hdmap1l6d.z |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
54 | 53 | eldifad 3895 |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ 𝑉) |
55 | 6, 39 | lmodvacl 20052 |
. . . . . 6
⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → (𝑌 + 𝑍) ∈ 𝑉) |
56 | 38, 21, 54, 55 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → (𝑌 + 𝑍) ∈ 𝑉) |
57 | 56 | anim1i 614 |
. . . 4
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 )) |
58 | | eldifsn 4717 |
. . . 4
⊢ ((𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 )) |
59 | 57, 58 | sylibr 233 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 })) |
60 | | hdmap1l6d.yz |
. . . . . . 7
⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) |
61 | | hdmap1l6d.xn |
. . . . . . . . 9
⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
62 | 6, 8, 15, 19, 21, 54, 61 | lspindpi 20309 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))) |
63 | 62 | simpld 494 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
64 | 6, 39, 7, 8, 15, 18, 20, 53, 16, 60, 63, 22 | mapdindp1 39661 |
. . . . . 6
⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
65 | 6, 39, 7, 8, 15, 18, 20, 53, 16, 60, 63, 22 | mapdindp2 39662 |
. . . . . 6
⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)})) |
66 | 6, 7, 8, 15, 18, 56, 17, 64, 65 | lspindp1 20310 |
. . . . 5
⊢ (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑤, (𝑌 + 𝑍)}))) |
67 | 66 | simprd 495 |
. . . 4
⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑤, (𝑌 + 𝑍)})) |
68 | 67 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ¬ 𝑋 ∈ (𝑁‘{𝑤, (𝑌 + 𝑍)})) |
69 | 23 | simprd 495 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})) |
70 | 6, 7, 8, 15, 16, 21, 69 | lspsnne1 20294 |
. . . . . . . 8
⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑌})) |
71 | | eqid 2738 |
. . . . . . . . . 10
⊢
(LSSum‘𝑈) =
(LSSum‘𝑈) |
72 | 6, 8, 71, 38, 21, 54 | lsmpr 20266 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁‘{𝑌, 𝑍}) = ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) |
73 | 60 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑌})) = ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) |
74 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
75 | 6, 74, 8 | lspsncl 20154 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
76 | 38, 21, 75 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
77 | 74 | lsssubg 20134 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑈)) |
78 | 38, 76, 77 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑈)) |
79 | 71 | lsmidm 19183 |
. . . . . . . . . 10
⊢ ((𝑁‘{𝑌}) ∈ (SubGrp‘𝑈) → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑌})) = (𝑁‘{𝑌})) |
80 | 78, 79 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑌})) = (𝑁‘{𝑌})) |
81 | 72, 73, 80 | 3eqtr2d 2784 |
. . . . . . . 8
⊢ (𝜑 → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑌})) |
82 | 70, 81 | neleqtrrd 2861 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑍})) |
83 | 6, 39, 8, 38, 21, 54, 17, 82 | lspindp4 20314 |
. . . . . 6
⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑌, (𝑌 + 𝑍)})) |
84 | 6, 8, 15, 17, 21, 56, 83 | lspindpi 20309 |
. . . . 5
⊢ (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)}))) |
85 | 84 | simprd 495 |
. . . 4
⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
86 | 85 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
87 | | eqidd 2739 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐼‘〈𝑋, 𝐹, 𝑤〉) = (𝐼‘〈𝑋, 𝐹, 𝑤〉)) |
88 | | eqidd 2739 |
. . 3
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉)) |
89 | 1, 5, 6, 39, 46, 7, 8, 2, 9, 27, 47, 28, 10, 11, 12, 48, 49, 50, 51, 52, 59, 68, 86, 87, 88 | hdmap1l6a 39750 |
. 2
⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐼‘〈𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))〉) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉))) |
90 | 45, 89 | pm2.61dane 3031 |
1
⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))〉) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉))) |