Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdhcl Structured version   Visualization version   GIF version

Theorem mapdhcl 41670
Description: Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdhc.y (𝜑𝑌𝑉)
mapdh.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
mapdhcl (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐼(𝑥,)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdhcl
StepHypRef Expression
1 oteq3 4866 . . . 4 (𝑌 = 0 → ⟨𝑋, 𝐹, 𝑌⟩ = ⟨𝑋, 𝐹, 0 ⟩)
21fveq2d 6891 . . 3 (𝑌 = 0 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = (𝐼‘⟨𝑋, 𝐹, 0 ⟩))
32eleq1d 2818 . 2 (𝑌 = 0 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷 ↔ (𝐼‘⟨𝑋, 𝐹, 0 ⟩) ∈ 𝐷))
4 mapdh.q . . . 4 𝑄 = (0g𝐶)
5 mapdh.i . . . 4 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
6 mapdhcl.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
76adantr 480 . . . 4 ((𝜑𝑌0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
8 mapdhc.f . . . . 5 (𝜑𝐹𝐷)
98adantr 480 . . . 4 ((𝜑𝑌0 ) → 𝐹𝐷)
10 mapdhc.y . . . . . 6 (𝜑𝑌𝑉)
1110anim1i 615 . . . . 5 ((𝜑𝑌0 ) → (𝑌𝑉𝑌0 ))
12 eldifsn 4768 . . . . 5 (𝑌 ∈ (𝑉 ∖ { 0 }) ↔ (𝑌𝑉𝑌0 ))
1311, 12sylibr 234 . . . 4 ((𝜑𝑌0 ) → 𝑌 ∈ (𝑉 ∖ { 0 }))
144, 5, 7, 9, 13mapdhval2 41669 . . 3 ((𝜑𝑌0 ) → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)}))))
15 mapdh.h . . . . 5 𝐻 = (LHyp‘𝐾)
16 mapdh.m . . . . 5 𝑀 = ((mapd‘𝐾)‘𝑊)
17 mapdh.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
18 mapdh.v . . . . 5 𝑉 = (Base‘𝑈)
19 mapdh.s . . . . 5 = (-g𝑈)
20 mapdhc.o . . . . 5 0 = (0g𝑈)
21 mapdh.n . . . . 5 𝑁 = (LSpan‘𝑈)
22 mapdh.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
23 mapdh.d . . . . 5 𝐷 = (Base‘𝐶)
24 mapdh.r . . . . 5 𝑅 = (-g𝐶)
25 mapdh.j . . . . 5 𝐽 = (LSpan‘𝐶)
26 mapdh.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2726adantr 480 . . . . 5 ((𝜑𝑌0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
28 mapdh.ne . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2928adantr 480 . . . . 5 ((𝜑𝑌0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
30 mapdh.mn . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
3130adantr 480 . . . . 5 ((𝜑𝑌0 ) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
3215, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 7, 13, 9, 29, 31mapdpg 41649 . . . 4 ((𝜑𝑌0 ) → ∃!𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)})))
33 riotacl 7388 . . . 4 (∃!𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)})) → (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)}))) ∈ 𝐷)
3432, 33syl 17 . . 3 ((𝜑𝑌0 ) → (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)}))) ∈ 𝐷)
3514, 34eqeltrd 2833 . 2 ((𝜑𝑌0 ) → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
364, 5, 20, 6, 8mapdhval0 41668 . . 3 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = 𝑄)
3715, 22, 23, 4, 26lcd0vcl 41557 . . 3 (𝜑𝑄𝐷)
3836, 37eqeltrd 2833 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) ∈ 𝐷)
393, 35, 38pm2.61ne 3016 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  ∃!wreu 3362  Vcvv 3464  cdif 3930  ifcif 4507  {csn 4608  cotp 4616  cmpt 5207  cfv 6542  crio 7370  (class class class)co 7414  1st c1st 7995  2nd c2nd 7996  Basecbs 17230  0gc0g 17460  -gcsg 18927  LSpanclspn 20942  HLchlt 39292  LHypclh 39927  DVecHcdvh 41021  LCDualclcd 41529  mapdcmpd 41567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-riotaBAD 38895
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-ot 4617  df-uni 4890  df-int 4929  df-iun 4975  df-iin 4976  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-om 7871  df-1st 7997  df-2nd 7998  df-tpos 8234  df-undef 8281  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-2o 8490  df-er 8728  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-n0 12511  df-z 12598  df-uz 12862  df-fz 13531  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17257  df-plusg 17290  df-mulr 17291  df-sca 17293  df-vsca 17294  df-0g 17462  df-mre 17605  df-mrc 17606  df-acs 17608  df-proset 18315  df-poset 18334  df-plt 18349  df-lub 18365  df-glb 18366  df-join 18367  df-meet 18368  df-p0 18444  df-p1 18445  df-lat 18451  df-clat 18518  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-submnd 18771  df-grp 18928  df-minusg 18929  df-sbg 18930  df-subg 19115  df-cntz 19309  df-oppg 19338  df-lsm 19627  df-cmn 19773  df-abl 19774  df-mgp 20111  df-rng 20123  df-ur 20152  df-ring 20205  df-oppr 20307  df-dvdsr 20330  df-unit 20331  df-invr 20361  df-dvr 20374  df-nzr 20486  df-rlreg 20667  df-domn 20668  df-drng 20704  df-lmod 20833  df-lss 20903  df-lsp 20943  df-lvec 21075  df-lsatoms 38918  df-lshyp 38919  df-lcv 38961  df-lfl 39000  df-lkr 39028  df-ldual 39066  df-oposet 39118  df-ol 39120  df-oml 39121  df-covers 39208  df-ats 39209  df-atl 39240  df-cvlat 39264  df-hlat 39293  df-llines 39441  df-lplanes 39442  df-lvols 39443  df-lines 39444  df-psubsp 39446  df-pmap 39447  df-padd 39739  df-lhyp 39931  df-laut 39932  df-ldil 40047  df-ltrn 40048  df-trl 40102  df-tgrp 40686  df-tendo 40698  df-edring 40700  df-dveca 40946  df-disoa 40972  df-dvech 41022  df-dib 41082  df-dic 41116  df-dih 41172  df-doch 41291  df-djh 41338  df-lcdual 41530  df-mapd 41568
This theorem is referenced by:  mapdheq4lem  41674  mapdheq4  41675  mapdh6lem1N  41676  mapdh6lem2N  41677  mapdh6aN  41678  mapdh6bN  41680  mapdh6cN  41681  mapdh6dN  41682  mapdh6hN  41686  mapdh7eN  41691  mapdh7cN  41692  mapdh7fN  41694  mapdh75e  41695  mapdh75fN  41698  mapdh8aa  41719  mapdh8d0N  41725  mapdh8d  41726  mapdh9a  41732  mapdh9aOLDN  41733  hdmap1cl  41747  hdmap1eulem  41765  hdmap1eulemOLDN  41766
  Copyright terms: Public domain W3C validator