Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdhcl | Structured version Visualization version GIF version |
Description: Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
mapdh.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdh.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdh.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdh.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdh.s | ⊢ − = (-g‘𝑈) |
mapdhc.o | ⊢ 0 = (0g‘𝑈) |
mapdh.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdh.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdh.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdh.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdh.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdh.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdhc.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
mapdh.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
mapdhcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdhc.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
mapdh.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
Ref | Expression |
---|---|
mapdhcl | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oteq3 4817 | . . . 4 ⊢ (𝑌 = 0 → 〈𝑋, 𝐹, 𝑌〉 = 〈𝑋, 𝐹, 0 〉) | |
2 | 1 | fveq2d 6765 | . . 3 ⊢ (𝑌 = 0 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (𝐼‘〈𝑋, 𝐹, 0 〉)) |
3 | 2 | eleq1d 2821 | . 2 ⊢ (𝑌 = 0 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷 ↔ (𝐼‘〈𝑋, 𝐹, 0 〉) ∈ 𝐷)) |
4 | mapdh.q | . . . 4 ⊢ 𝑄 = (0g‘𝐶) | |
5 | mapdh.i | . . . 4 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
6 | mapdhcl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
8 | mapdhc.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ≠ 0 ) → 𝐹 ∈ 𝐷) |
10 | mapdhc.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
11 | 10 | anim1i 614 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ≠ 0 ) → (𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 0 )) |
12 | eldifsn 4722 | . . . . 5 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) ↔ (𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 0 )) | |
13 | 11, 12 | sylibr 233 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ≠ 0 ) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
14 | 4, 5, 7, 9, 13 | mapdhval2 39709 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ≠ 0 ) → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)})))) |
15 | mapdh.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
16 | mapdh.m | . . . . 5 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
17 | mapdh.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
18 | mapdh.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
19 | mapdh.s | . . . . 5 ⊢ − = (-g‘𝑈) | |
20 | mapdhc.o | . . . . 5 ⊢ 0 = (0g‘𝑈) | |
21 | mapdh.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
22 | mapdh.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
23 | mapdh.d | . . . . 5 ⊢ 𝐷 = (Base‘𝐶) | |
24 | mapdh.r | . . . . 5 ⊢ 𝑅 = (-g‘𝐶) | |
25 | mapdh.j | . . . . 5 ⊢ 𝐽 = (LSpan‘𝐶) | |
26 | mapdh.k | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
27 | 26 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ≠ 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
28 | mapdh.ne | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
29 | 28 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ≠ 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
30 | mapdh.mn | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
31 | 30 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ≠ 0 ) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
32 | 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 7, 13, 9, 29, 31 | mapdpg 39689 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ≠ 0 ) → ∃!ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)}))) |
33 | riotacl 7235 | . . . 4 ⊢ (∃!ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)})) → (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)}))) ∈ 𝐷) | |
34 | 32, 33 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ≠ 0 ) → (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)}))) ∈ 𝐷) |
35 | 14, 34 | eqeltrd 2837 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 0 ) → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) |
36 | 4, 5, 20, 6, 8 | mapdhval0 39708 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) |
37 | 15, 22, 23, 4, 26 | lcd0vcl 39597 | . . 3 ⊢ (𝜑 → 𝑄 ∈ 𝐷) |
38 | 36, 37 | eqeltrd 2837 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) ∈ 𝐷) |
39 | 3, 35, 38 | pm2.61ne 3028 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2941 ∃!wreu 3064 Vcvv 3427 ∖ cdif 3885 ifcif 4461 {csn 4563 〈cotp 4571 ↦ cmpt 5158 ‘cfv 6423 ℩crio 7216 (class class class)co 7260 1st c1st 7807 2nd c2nd 7808 Basecbs 16856 0gc0g 17094 -gcsg 18523 LSpanclspn 20177 HLchlt 37333 LHypclh 37967 DVecHcdvh 39061 LCDualclcd 39569 mapdcmpd 39607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 ax-cnex 10874 ax-resscn 10875 ax-1cn 10876 ax-icn 10877 ax-addcl 10878 ax-addrcl 10879 ax-mulcl 10880 ax-mulrcl 10881 ax-mulcom 10882 ax-addass 10883 ax-mulass 10884 ax-distr 10885 ax-i2m1 10886 ax-1ne0 10887 ax-1rid 10888 ax-rnegex 10889 ax-rrecex 10890 ax-cnre 10891 ax-pre-lttri 10892 ax-pre-lttrn 10893 ax-pre-ltadd 10894 ax-pre-mulgt0 10895 ax-riotaBAD 36936 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-ot 4572 df-uni 4842 df-int 4882 df-iun 4928 df-iin 4929 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6259 df-on 6260 df-lim 6261 df-suc 6262 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-riota 7217 df-ov 7263 df-oprab 7264 df-mpo 7265 df-of 7516 df-om 7693 df-1st 7809 df-2nd 7810 df-tpos 8018 df-undef 8065 df-frecs 8073 df-wrecs 8104 df-recs 8178 df-rdg 8217 df-1o 8272 df-er 8461 df-map 8580 df-en 8697 df-dom 8698 df-sdom 8699 df-fin 8700 df-pnf 10958 df-mnf 10959 df-xr 10960 df-ltxr 10961 df-le 10962 df-sub 11153 df-neg 11154 df-nn 11920 df-2 11982 df-3 11983 df-4 11984 df-5 11985 df-6 11986 df-n0 12180 df-z 12266 df-uz 12528 df-fz 13185 df-struct 16792 df-sets 16809 df-slot 16827 df-ndx 16839 df-base 16857 df-ress 16886 df-plusg 16919 df-mulr 16920 df-sca 16922 df-vsca 16923 df-0g 17096 df-mre 17239 df-mrc 17240 df-acs 17242 df-proset 17957 df-poset 17975 df-plt 17992 df-lub 18008 df-glb 18009 df-join 18010 df-meet 18011 df-p0 18087 df-p1 18088 df-lat 18094 df-clat 18161 df-mgm 18270 df-sgrp 18319 df-mnd 18330 df-submnd 18375 df-grp 18524 df-minusg 18525 df-sbg 18526 df-subg 18696 df-cntz 18867 df-oppg 18894 df-lsm 19185 df-cmn 19332 df-abl 19333 df-mgp 19665 df-ur 19682 df-ring 19729 df-oppr 19806 df-dvdsr 19827 df-unit 19828 df-invr 19858 df-dvr 19869 df-drng 19937 df-lmod 20069 df-lss 20138 df-lsp 20178 df-lvec 20309 df-lsatoms 36959 df-lshyp 36960 df-lcv 37002 df-lfl 37041 df-lkr 37069 df-ldual 37107 df-oposet 37159 df-ol 37161 df-oml 37162 df-covers 37249 df-ats 37250 df-atl 37281 df-cvlat 37305 df-hlat 37334 df-llines 37481 df-lplanes 37482 df-lvols 37483 df-lines 37484 df-psubsp 37486 df-pmap 37487 df-padd 37779 df-lhyp 37971 df-laut 37972 df-ldil 38087 df-ltrn 38088 df-trl 38142 df-tgrp 38726 df-tendo 38738 df-edring 38740 df-dveca 38986 df-disoa 39012 df-dvech 39062 df-dib 39122 df-dic 39156 df-dih 39212 df-doch 39331 df-djh 39378 df-lcdual 39570 df-mapd 39608 |
This theorem is referenced by: mapdheq4lem 39714 mapdheq4 39715 mapdh6lem1N 39716 mapdh6lem2N 39717 mapdh6aN 39718 mapdh6bN 39720 mapdh6cN 39721 mapdh6dN 39722 mapdh6hN 39726 mapdh7eN 39731 mapdh7cN 39732 mapdh7fN 39734 mapdh75e 39735 mapdh75fN 39738 mapdh8aa 39759 mapdh8d0N 39765 mapdh8d 39766 mapdh9a 39772 mapdh9aOLDN 39773 hdmap1cl 39787 hdmap1eulem 39805 hdmap1eulemOLDN 39806 |
Copyright terms: Public domain | W3C validator |