|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapval | Structured version Visualization version GIF version | ||
| Description: Value of map from vectors to functionals in the closed kernel dual space. This is the function sigma on line 27 above part 9 in [Baer] p. 48. We select a convenient fixed reference vector 𝐸 to be 〈0, 1〉 (corresponding to vector u on p. 48 line 7) whose span is the lattice isomorphism map of the fiducial atom 𝑃 = ((oc‘𝐾)‘𝑊) (see dvheveccl 41114). (𝐽‘𝐸) is a fixed reference functional determined by this vector (corresponding to u' on line 8; mapdhvmap 41771 shows in Baer's notation (Fu)* = Gu'). Baer's independent vectors v and w on line 7 correspond to our 𝑧 that the ∀𝑧 ∈ 𝑉 ranges over. The middle term (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉) provides isolation to allow 𝐸 and 𝑇 to assume the same value without conflict. Closure is shown by hdmapcl 41832. If a separate auxiliary vector is known, hdmapval2 41834 provides a version without quantification. (Contributed by NM, 15-May-2015.) | 
| Ref | Expression | 
|---|---|
| hdmapval.h | ⊢ 𝐻 = (LHyp‘𝐾) | 
| hdmapfval.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | 
| hdmapfval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| hdmapfval.v | ⊢ 𝑉 = (Base‘𝑈) | 
| hdmapfval.n | ⊢ 𝑁 = (LSpan‘𝑈) | 
| hdmapfval.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | 
| hdmapfval.d | ⊢ 𝐷 = (Base‘𝐶) | 
| hdmapfval.j | ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) | 
| hdmapfval.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | 
| hdmapfval.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | 
| hdmapfval.k | ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) | 
| hdmapval.t | ⊢ (𝜑 → 𝑇 ∈ 𝑉) | 
| Ref | Expression | 
|---|---|
| hdmapval | ⊢ (𝜑 → (𝑆‘𝑇) = (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hdmapval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hdmapfval.e | . . . 4 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
| 3 | hdmapfval.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | hdmapfval.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
| 5 | hdmapfval.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 6 | hdmapfval.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 7 | hdmapfval.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
| 8 | hdmapfval.j | . . . 4 ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) | |
| 9 | hdmapfval.i | . . . 4 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
| 10 | hdmapfval.s | . . . 4 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
| 11 | hdmapfval.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | hdmapfval 41829 | . . 3 ⊢ (𝜑 → 𝑆 = (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉))))) | 
| 13 | 12 | fveq1d 6908 | . 2 ⊢ (𝜑 → (𝑆‘𝑇) = ((𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉))))‘𝑇)) | 
| 14 | hdmapval.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
| 15 | riotaex 7392 | . . 3 ⊢ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉))) ∈ V | |
| 16 | sneq 4636 | . . . . . . . . . . 11 ⊢ (𝑡 = 𝑇 → {𝑡} = {𝑇}) | |
| 17 | 16 | fveq2d 6910 | . . . . . . . . . 10 ⊢ (𝑡 = 𝑇 → (𝑁‘{𝑡}) = (𝑁‘{𝑇})) | 
| 18 | 17 | uneq2d 4168 | . . . . . . . . 9 ⊢ (𝑡 = 𝑇 → ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) = ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇}))) | 
| 19 | 18 | eleq2d 2827 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → (𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) ↔ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})))) | 
| 20 | 19 | notbid 318 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) ↔ ¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})))) | 
| 21 | oteq3 4884 | . . . . . . . . 9 ⊢ (𝑡 = 𝑇 → 〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉 = 〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉) | |
| 22 | 21 | fveq2d 6910 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉) = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)) | 
| 23 | 22 | eqeq2d 2748 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉) ↔ 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉))) | 
| 24 | 20, 23 | imbi12d 344 | . . . . . 6 ⊢ (𝑡 = 𝑇 → ((¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉)) ↔ (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)))) | 
| 25 | 24 | ralbidv 3178 | . . . . 5 ⊢ (𝑡 = 𝑇 → (∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉)) ↔ ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)))) | 
| 26 | 25 | riotabidv 7390 | . . . 4 ⊢ (𝑡 = 𝑇 → (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉))) = (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)))) | 
| 27 | eqid 2737 | . . . 4 ⊢ (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉)))) = (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉)))) | |
| 28 | 26, 27 | fvmptg 7014 | . . 3 ⊢ ((𝑇 ∈ 𝑉 ∧ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉))) ∈ V) → ((𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉))))‘𝑇) = (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)))) | 
| 29 | 14, 15, 28 | sylancl 586 | . 2 ⊢ (𝜑 → ((𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉))))‘𝑇) = (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)))) | 
| 30 | 13, 29 | eqtrd 2777 | 1 ⊢ (𝜑 → (𝑆‘𝑇) = (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 Vcvv 3480 ∪ cun 3949 {csn 4626 〈cop 4632 〈cotp 4634 ↦ cmpt 5225 I cid 5577 ↾ cres 5687 ‘cfv 6561 ℩crio 7387 Basecbs 17247 LSpanclspn 20969 LHypclh 39986 LTrncltrn 40103 DVecHcdvh 41080 LCDualclcd 41588 HVMapchvm 41758 HDMap1chdma1 41793 HDMapchdma 41794 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-ot 4635 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-hdmap 41796 | 
| This theorem is referenced by: hdmapcl 41832 hdmapval2lem 41833 | 
| Copyright terms: Public domain | W3C validator |