Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapval Structured version   Visualization version   GIF version

Theorem hdmapval 41847
Description: Value of map from vectors to functionals in the closed kernel dual space. This is the function sigma on line 27 above part 9 in [Baer] p. 48. We select a convenient fixed reference vector 𝐸 to be ⟨0, 1⟩ (corresponding to vector u on p. 48 line 7) whose span is the lattice isomorphism map of the fiducial atom 𝑃 = ((oc‘𝐾)‘𝑊) (see dvheveccl 41131). (𝐽𝐸) is a fixed reference functional determined by this vector (corresponding to u' on line 8; mapdhvmap 41788 shows in Baer's notation (Fu)* = Gu'). Baer's independent vectors v and w on line 7 correspond to our 𝑧 that the 𝑧𝑉 ranges over. The middle term (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩) provides isolation to allow 𝐸 and 𝑇 to assume the same value without conflict. Closure is shown by hdmapcl 41849. If a separate auxiliary vector is known, hdmapval2 41851 provides a version without quantification. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmapval.h 𝐻 = (LHyp‘𝐾)
hdmapfval.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmapfval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapfval.v 𝑉 = (Base‘𝑈)
hdmapfval.n 𝑁 = (LSpan‘𝑈)
hdmapfval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmapfval.d 𝐷 = (Base‘𝐶)
hdmapfval.j 𝐽 = ((HVMap‘𝐾)‘𝑊)
hdmapfval.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmapfval.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapfval.k (𝜑 → (𝐾𝐴𝑊𝐻))
hdmapval.t (𝜑𝑇𝑉)
Assertion
Ref Expression
hdmapval (𝜑 → (𝑆𝑇) = (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩))))
Distinct variable groups:   𝑦,𝑧,𝐾   𝑦,𝐷   𝑦,𝐸,𝑧   𝑦,𝐼,𝑧   𝑦,𝑈,𝑧   𝑦,𝑉,𝑧   𝑦,𝑊,𝑧   𝑦,𝑇,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐴(𝑦,𝑧)   𝐶(𝑦,𝑧)   𝐷(𝑧)   𝑆(𝑦,𝑧)   𝐻(𝑦,𝑧)   𝐽(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem hdmapval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 hdmapval.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmapfval.e . . . 4 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
3 hdmapfval.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 hdmapfval.v . . . 4 𝑉 = (Base‘𝑈)
5 hdmapfval.n . . . 4 𝑁 = (LSpan‘𝑈)
6 hdmapfval.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
7 hdmapfval.d . . . 4 𝐷 = (Base‘𝐶)
8 hdmapfval.j . . . 4 𝐽 = ((HVMap‘𝐾)‘𝑊)
9 hdmapfval.i . . . 4 𝐼 = ((HDMap1‘𝐾)‘𝑊)
10 hdmapfval.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
11 hdmapfval.k . . . 4 (𝜑 → (𝐾𝐴𝑊𝐻))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hdmapfval 41846 . . 3 (𝜑𝑆 = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
1312fveq1d 6878 . 2 (𝜑 → (𝑆𝑇) = ((𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))‘𝑇))
14 hdmapval.t . . 3 (𝜑𝑇𝑉)
15 riotaex 7366 . . 3 (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩))) ∈ V
16 sneq 4611 . . . . . . . . . . 11 (𝑡 = 𝑇 → {𝑡} = {𝑇})
1716fveq2d 6880 . . . . . . . . . 10 (𝑡 = 𝑇 → (𝑁‘{𝑡}) = (𝑁‘{𝑇}))
1817uneq2d 4143 . . . . . . . . 9 (𝑡 = 𝑇 → ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) = ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})))
1918eleq2d 2820 . . . . . . . 8 (𝑡 = 𝑇 → (𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) ↔ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇}))))
2019notbid 318 . . . . . . 7 (𝑡 = 𝑇 → (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) ↔ ¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇}))))
21 oteq3 4860 . . . . . . . . 9 (𝑡 = 𝑇 → ⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩ = ⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩)
2221fveq2d 6880 . . . . . . . 8 (𝑡 = 𝑇 → (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩) = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩))
2322eqeq2d 2746 . . . . . . 7 (𝑡 = 𝑇 → (𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩) ↔ 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩)))
2420, 23imbi12d 344 . . . . . 6 (𝑡 = 𝑇 → ((¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)) ↔ (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩))))
2524ralbidv 3163 . . . . 5 (𝑡 = 𝑇 → (∀𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)) ↔ ∀𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩))))
2625riotabidv 7364 . . . 4 (𝑡 = 𝑇 → (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))) = (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩))))
27 eqid 2735 . . . 4 (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))) = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))
2826, 27fvmptg 6984 . . 3 ((𝑇𝑉 ∧ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩))) ∈ V) → ((𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))‘𝑇) = (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩))))
2914, 15, 28sylancl 586 . 2 (𝜑 → ((𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))‘𝑇) = (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩))))
3013, 29eqtrd 2770 1 (𝜑 → (𝑆𝑇) = (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  cun 3924  {csn 4601  cop 4607  cotp 4609  cmpt 5201   I cid 5547  cres 5656  cfv 6531  crio 7361  Basecbs 17228  LSpanclspn 20928  LHypclh 40003  LTrncltrn 40120  DVecHcdvh 41097  LCDualclcd 41605  HVMapchvm 41775  HDMap1chdma1 41810  HDMapchdma 41811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-ot 4610  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-hdmap 41813
This theorem is referenced by:  hdmapcl  41849  hdmapval2lem  41850
  Copyright terms: Public domain W3C validator