Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapval Structured version   Visualization version   GIF version

Theorem hdmapval 37898
Description: Value of map from vectors to functionals in the closed kernel dual space. This is the function sigma on line 27 above part 9 in [Baer] p. 48. We select a convenient fixed reference vector 𝐸 to be ⟨0, 1⟩ (corresponding to vector u on p. 48 line 7) whose span is the lattice isomorphism map of the fiducial atom 𝑃 = ((oc‘𝐾)‘𝑊) (see dvheveccl 37182). (𝐽𝐸) is a fixed reference functional determined by this vector (corresponding to u' on line 8; mapdhvmap 37839 shows in Baer's notation (Fu)* = Gu'). Baer's independent vectors v and w on line 7 correspond to our 𝑧 that the 𝑧𝑉 ranges over. The middle term (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩) provides isolation to allow 𝐸 and 𝑇 to assume the same value without conflict. Closure is shown by hdmapcl 37900. If a separate auxiliary vector is known, hdmapval2 37902 provides a version without quantification. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmapval.h 𝐻 = (LHyp‘𝐾)
hdmapfval.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmapfval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapfval.v 𝑉 = (Base‘𝑈)
hdmapfval.n 𝑁 = (LSpan‘𝑈)
hdmapfval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmapfval.d 𝐷 = (Base‘𝐶)
hdmapfval.j 𝐽 = ((HVMap‘𝐾)‘𝑊)
hdmapfval.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmapfval.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapfval.k (𝜑 → (𝐾𝐴𝑊𝐻))
hdmapval.t (𝜑𝑇𝑉)
Assertion
Ref Expression
hdmapval (𝜑 → (𝑆𝑇) = (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩))))
Distinct variable groups:   𝑦,𝑧,𝐾   𝑦,𝐷   𝑦,𝐸,𝑧   𝑦,𝐼,𝑧   𝑦,𝑈,𝑧   𝑦,𝑉,𝑧   𝑦,𝑊,𝑧   𝑦,𝑇,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐴(𝑦,𝑧)   𝐶(𝑦,𝑧)   𝐷(𝑧)   𝑆(𝑦,𝑧)   𝐻(𝑦,𝑧)   𝐽(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem hdmapval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 hdmapval.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmapfval.e . . . 4 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
3 hdmapfval.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 hdmapfval.v . . . 4 𝑉 = (Base‘𝑈)
5 hdmapfval.n . . . 4 𝑁 = (LSpan‘𝑈)
6 hdmapfval.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
7 hdmapfval.d . . . 4 𝐷 = (Base‘𝐶)
8 hdmapfval.j . . . 4 𝐽 = ((HVMap‘𝐾)‘𝑊)
9 hdmapfval.i . . . 4 𝐼 = ((HDMap1‘𝐾)‘𝑊)
10 hdmapfval.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
11 hdmapfval.k . . . 4 (𝜑 → (𝐾𝐴𝑊𝐻))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hdmapfval 37897 . . 3 (𝜑𝑆 = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
1312fveq1d 6439 . 2 (𝜑 → (𝑆𝑇) = ((𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))‘𝑇))
14 hdmapval.t . . 3 (𝜑𝑇𝑉)
15 riotaex 6875 . . 3 (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩))) ∈ V
16 sneq 4409 . . . . . . . . . . 11 (𝑡 = 𝑇 → {𝑡} = {𝑇})
1716fveq2d 6441 . . . . . . . . . 10 (𝑡 = 𝑇 → (𝑁‘{𝑡}) = (𝑁‘{𝑇}))
1817uneq2d 3996 . . . . . . . . 9 (𝑡 = 𝑇 → ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) = ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})))
1918eleq2d 2892 . . . . . . . 8 (𝑡 = 𝑇 → (𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) ↔ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇}))))
2019notbid 310 . . . . . . 7 (𝑡 = 𝑇 → (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) ↔ ¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇}))))
21 oteq3 4636 . . . . . . . . 9 (𝑡 = 𝑇 → ⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩ = ⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩)
2221fveq2d 6441 . . . . . . . 8 (𝑡 = 𝑇 → (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩) = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩))
2322eqeq2d 2835 . . . . . . 7 (𝑡 = 𝑇 → (𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩) ↔ 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩)))
2420, 23imbi12d 336 . . . . . 6 (𝑡 = 𝑇 → ((¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)) ↔ (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩))))
2524ralbidv 3195 . . . . 5 (𝑡 = 𝑇 → (∀𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)) ↔ ∀𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩))))
2625riotabidv 6873 . . . 4 (𝑡 = 𝑇 → (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))) = (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩))))
27 eqid 2825 . . . 4 (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))) = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))
2826, 27fvmptg 6531 . . 3 ((𝑇𝑉 ∧ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩))) ∈ V) → ((𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))‘𝑇) = (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩))))
2914, 15, 28sylancl 580 . 2 (𝜑 → ((𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))‘𝑇) = (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩))))
3013, 29eqtrd 2861 1 (𝜑 → (𝑆𝑇) = (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑇⟩))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1656  wcel 2164  wral 3117  Vcvv 3414  cun 3796  {csn 4399  cop 4405  cotp 4407  cmpt 4954   I cid 5251  cres 5348  cfv 6127  crio 6870  Basecbs 16229  LSpanclspn 19337  LHypclh 36054  LTrncltrn 36171  DVecHcdvh 37148  LCDualclcd 37656  HVMapchvm 37826  HDMap1chdma1 37861  HDMapchdma 37862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pr 5129
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-ot 4408  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-hdmap 37864
This theorem is referenced by:  hdmapcl  37900  hdmapval2lem  37901
  Copyright terms: Public domain W3C validator