Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapval Structured version   Visualization version   GIF version

Theorem hdmapval 41387
Description: Value of map from vectors to functionals in the closed kernel dual space. This is the function sigma on line 27 above part 9 in [Baer] p. 48. We select a convenient fixed reference vector 𝐸 to be ⟨0, 1⟩ (corresponding to vector u on p. 48 line 7) whose span is the lattice isomorphism map of the fiducial atom 𝑃 = ((ocβ€˜πΎ)β€˜π‘Š) (see dvheveccl 40671). (π½β€˜πΈ) is a fixed reference functional determined by this vector (corresponding to u' on line 8; mapdhvmap 41328 shows in Baer's notation (Fu)* = Gu'). Baer's independent vectors v and w on line 7 correspond to our 𝑧 that the βˆ€π‘§ ∈ 𝑉 ranges over. The middle term (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©) provides isolation to allow 𝐸 and 𝑇 to assume the same value without conflict. Closure is shown by hdmapcl 41389. If a separate auxiliary vector is known, hdmapval2 41391 provides a version without quantification. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmapval.h 𝐻 = (LHypβ€˜πΎ)
hdmapfval.e 𝐸 = ⟨( I β†Ύ (Baseβ€˜πΎ)), ( I β†Ύ ((LTrnβ€˜πΎ)β€˜π‘Š))⟩
hdmapfval.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
hdmapfval.v 𝑉 = (Baseβ€˜π‘ˆ)
hdmapfval.n 𝑁 = (LSpanβ€˜π‘ˆ)
hdmapfval.c 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
hdmapfval.d 𝐷 = (Baseβ€˜πΆ)
hdmapfval.j 𝐽 = ((HVMapβ€˜πΎ)β€˜π‘Š)
hdmapfval.i 𝐼 = ((HDMap1β€˜πΎ)β€˜π‘Š)
hdmapfval.s 𝑆 = ((HDMapβ€˜πΎ)β€˜π‘Š)
hdmapfval.k (πœ‘ β†’ (𝐾 ∈ 𝐴 ∧ π‘Š ∈ 𝐻))
hdmapval.t (πœ‘ β†’ 𝑇 ∈ 𝑉)
Assertion
Ref Expression
hdmapval (πœ‘ β†’ (π‘†β€˜π‘‡) = (℩𝑦 ∈ 𝐷 βˆ€π‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑇})) β†’ 𝑦 = (πΌβ€˜βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‡βŸ©))))
Distinct variable groups:   𝑦,𝑧,𝐾   𝑦,𝐷   𝑦,𝐸,𝑧   𝑦,𝐼,𝑧   𝑦,π‘ˆ,𝑧   𝑦,𝑉,𝑧   𝑦,π‘Š,𝑧   𝑦,𝑇,𝑧
Allowed substitution hints:   πœ‘(𝑦,𝑧)   𝐴(𝑦,𝑧)   𝐢(𝑦,𝑧)   𝐷(𝑧)   𝑆(𝑦,𝑧)   𝐻(𝑦,𝑧)   𝐽(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem hdmapval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 hdmapval.h . . . 4 𝐻 = (LHypβ€˜πΎ)
2 hdmapfval.e . . . 4 𝐸 = ⟨( I β†Ύ (Baseβ€˜πΎ)), ( I β†Ύ ((LTrnβ€˜πΎ)β€˜π‘Š))⟩
3 hdmapfval.u . . . 4 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
4 hdmapfval.v . . . 4 𝑉 = (Baseβ€˜π‘ˆ)
5 hdmapfval.n . . . 4 𝑁 = (LSpanβ€˜π‘ˆ)
6 hdmapfval.c . . . 4 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
7 hdmapfval.d . . . 4 𝐷 = (Baseβ€˜πΆ)
8 hdmapfval.j . . . 4 𝐽 = ((HVMapβ€˜πΎ)β€˜π‘Š)
9 hdmapfval.i . . . 4 𝐼 = ((HDMap1β€˜πΎ)β€˜π‘Š)
10 hdmapfval.s . . . 4 𝑆 = ((HDMapβ€˜πΎ)β€˜π‘Š)
11 hdmapfval.k . . . 4 (πœ‘ β†’ (𝐾 ∈ 𝐴 ∧ π‘Š ∈ 𝐻))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hdmapfval 41386 . . 3 (πœ‘ β†’ 𝑆 = (𝑑 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 βˆ€π‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑑})) β†’ 𝑦 = (πΌβ€˜βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‘βŸ©)))))
1312fveq1d 6896 . 2 (πœ‘ β†’ (π‘†β€˜π‘‡) = ((𝑑 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 βˆ€π‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑑})) β†’ 𝑦 = (πΌβ€˜βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‘βŸ©))))β€˜π‘‡))
14 hdmapval.t . . 3 (πœ‘ β†’ 𝑇 ∈ 𝑉)
15 riotaex 7377 . . 3 (℩𝑦 ∈ 𝐷 βˆ€π‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑇})) β†’ 𝑦 = (πΌβ€˜βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‡βŸ©))) ∈ V
16 sneq 4639 . . . . . . . . . . 11 (𝑑 = 𝑇 β†’ {𝑑} = {𝑇})
1716fveq2d 6898 . . . . . . . . . 10 (𝑑 = 𝑇 β†’ (π‘β€˜{𝑑}) = (π‘β€˜{𝑇}))
1817uneq2d 4161 . . . . . . . . 9 (𝑑 = 𝑇 β†’ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑑})) = ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑇})))
1918eleq2d 2811 . . . . . . . 8 (𝑑 = 𝑇 β†’ (𝑧 ∈ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑑})) ↔ 𝑧 ∈ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑇}))))
2019notbid 317 . . . . . . 7 (𝑑 = 𝑇 β†’ (Β¬ 𝑧 ∈ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑑})) ↔ Β¬ 𝑧 ∈ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑇}))))
21 oteq3 4885 . . . . . . . . 9 (𝑑 = 𝑇 β†’ βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‘βŸ© = βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‡βŸ©)
2221fveq2d 6898 . . . . . . . 8 (𝑑 = 𝑇 β†’ (πΌβ€˜βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‘βŸ©) = (πΌβ€˜βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‡βŸ©))
2322eqeq2d 2736 . . . . . . 7 (𝑑 = 𝑇 β†’ (𝑦 = (πΌβ€˜βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‘βŸ©) ↔ 𝑦 = (πΌβ€˜βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‡βŸ©)))
2420, 23imbi12d 343 . . . . . 6 (𝑑 = 𝑇 β†’ ((Β¬ 𝑧 ∈ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑑})) β†’ 𝑦 = (πΌβ€˜βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‘βŸ©)) ↔ (Β¬ 𝑧 ∈ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑇})) β†’ 𝑦 = (πΌβ€˜βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‡βŸ©))))
2524ralbidv 3168 . . . . 5 (𝑑 = 𝑇 β†’ (βˆ€π‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑑})) β†’ 𝑦 = (πΌβ€˜βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‘βŸ©)) ↔ βˆ€π‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑇})) β†’ 𝑦 = (πΌβ€˜βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‡βŸ©))))
2625riotabidv 7375 . . . 4 (𝑑 = 𝑇 β†’ (℩𝑦 ∈ 𝐷 βˆ€π‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑑})) β†’ 𝑦 = (πΌβ€˜βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‘βŸ©))) = (℩𝑦 ∈ 𝐷 βˆ€π‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑇})) β†’ 𝑦 = (πΌβ€˜βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‡βŸ©))))
27 eqid 2725 . . . 4 (𝑑 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 βˆ€π‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑑})) β†’ 𝑦 = (πΌβ€˜βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‘βŸ©)))) = (𝑑 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 βˆ€π‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑑})) β†’ 𝑦 = (πΌβ€˜βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‘βŸ©))))
2826, 27fvmptg 7000 . . 3 ((𝑇 ∈ 𝑉 ∧ (℩𝑦 ∈ 𝐷 βˆ€π‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑇})) β†’ 𝑦 = (πΌβ€˜βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‡βŸ©))) ∈ V) β†’ ((𝑑 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 βˆ€π‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑑})) β†’ 𝑦 = (πΌβ€˜βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‘βŸ©))))β€˜π‘‡) = (℩𝑦 ∈ 𝐷 βˆ€π‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑇})) β†’ 𝑦 = (πΌβ€˜βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‡βŸ©))))
2914, 15, 28sylancl 584 . 2 (πœ‘ β†’ ((𝑑 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 βˆ€π‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑑})) β†’ 𝑦 = (πΌβ€˜βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‘βŸ©))))β€˜π‘‡) = (℩𝑦 ∈ 𝐷 βˆ€π‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑇})) β†’ 𝑦 = (πΌβ€˜βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‡βŸ©))))
3013, 29eqtrd 2765 1 (πœ‘ β†’ (π‘†β€˜π‘‡) = (℩𝑦 ∈ 𝐷 βˆ€π‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ ((π‘β€˜{𝐸}) βˆͺ (π‘β€˜{𝑇})) β†’ 𝑦 = (πΌβ€˜βŸ¨π‘§, (πΌβ€˜βŸ¨πΈ, (π½β€˜πΈ), π‘§βŸ©), π‘‡βŸ©))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  βˆ€wral 3051  Vcvv 3463   βˆͺ cun 3943  {csn 4629  βŸ¨cop 4635  βŸ¨cotp 4637   ↦ cmpt 5231   I cid 5574   β†Ύ cres 5679  β€˜cfv 6547  β„©crio 7372  Basecbs 17180  LSpanclspn 20860  LHypclh 39543  LTrncltrn 39660  DVecHcdvh 40637  LCDualclcd 41145  HVMapchvm 41315  HDMap1chdma1 41350  HDMapchdma 41351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-ot 4638  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-hdmap 41353
This theorem is referenced by:  hdmapcl  41389  hdmapval2lem  41390
  Copyright terms: Public domain W3C validator