![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapval | Structured version Visualization version GIF version |
Description: Value of map from vectors to functionals in the closed kernel dual space. This is the function sigma on line 27 above part 9 in [Baer] p. 48. We select a convenient fixed reference vector 𝐸 to be 〈0, 1〉 (corresponding to vector u on p. 48 line 7) whose span is the lattice isomorphism map of the fiducial atom 𝑃 = ((oc‘𝐾)‘𝑊) (see dvheveccl 39575). (𝐽‘𝐸) is a fixed reference functional determined by this vector (corresponding to u' on line 8; mapdhvmap 40232 shows in Baer's notation (Fu)* = Gu'). Baer's independent vectors v and w on line 7 correspond to our 𝑧 that the ∀𝑧 ∈ 𝑉 ranges over. The middle term (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉) provides isolation to allow 𝐸 and 𝑇 to assume the same value without conflict. Closure is shown by hdmapcl 40293. If a separate auxiliary vector is known, hdmapval2 40295 provides a version without quantification. (Contributed by NM, 15-May-2015.) |
Ref | Expression |
---|---|
hdmapval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmapfval.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 |
hdmapfval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmapfval.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmapfval.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmapfval.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmapfval.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmapfval.j | ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) |
hdmapfval.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
hdmapfval.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmapfval.k | ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) |
hdmapval.t | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
Ref | Expression |
---|---|
hdmapval | ⊢ (𝜑 → (𝑆‘𝑇) = (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmapfval.e | . . . 4 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
3 | hdmapfval.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | hdmapfval.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
5 | hdmapfval.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
6 | hdmapfval.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
7 | hdmapfval.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
8 | hdmapfval.j | . . . 4 ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) | |
9 | hdmapfval.i | . . . 4 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
10 | hdmapfval.s | . . . 4 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
11 | hdmapfval.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | hdmapfval 40290 | . . 3 ⊢ (𝜑 → 𝑆 = (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉))))) |
13 | 12 | fveq1d 6844 | . 2 ⊢ (𝜑 → (𝑆‘𝑇) = ((𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉))))‘𝑇)) |
14 | hdmapval.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
15 | riotaex 7317 | . . 3 ⊢ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉))) ∈ V | |
16 | sneq 4596 | . . . . . . . . . . 11 ⊢ (𝑡 = 𝑇 → {𝑡} = {𝑇}) | |
17 | 16 | fveq2d 6846 | . . . . . . . . . 10 ⊢ (𝑡 = 𝑇 → (𝑁‘{𝑡}) = (𝑁‘{𝑇})) |
18 | 17 | uneq2d 4123 | . . . . . . . . 9 ⊢ (𝑡 = 𝑇 → ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) = ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇}))) |
19 | 18 | eleq2d 2823 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → (𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) ↔ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})))) |
20 | 19 | notbid 317 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) ↔ ¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})))) |
21 | oteq3 4841 | . . . . . . . . 9 ⊢ (𝑡 = 𝑇 → 〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉 = 〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉) | |
22 | 21 | fveq2d 6846 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉) = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)) |
23 | 22 | eqeq2d 2747 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉) ↔ 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉))) |
24 | 20, 23 | imbi12d 344 | . . . . . 6 ⊢ (𝑡 = 𝑇 → ((¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉)) ↔ (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)))) |
25 | 24 | ralbidv 3174 | . . . . 5 ⊢ (𝑡 = 𝑇 → (∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉)) ↔ ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)))) |
26 | 25 | riotabidv 7315 | . . . 4 ⊢ (𝑡 = 𝑇 → (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉))) = (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)))) |
27 | eqid 2736 | . . . 4 ⊢ (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉)))) = (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉)))) | |
28 | 26, 27 | fvmptg 6946 | . . 3 ⊢ ((𝑇 ∈ 𝑉 ∧ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉))) ∈ V) → ((𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉))))‘𝑇) = (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)))) |
29 | 14, 15, 28 | sylancl 586 | . 2 ⊢ (𝜑 → ((𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉))))‘𝑇) = (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)))) |
30 | 13, 29 | eqtrd 2776 | 1 ⊢ (𝜑 → (𝑆‘𝑇) = (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3064 Vcvv 3445 ∪ cun 3908 {csn 4586 〈cop 4592 〈cotp 4594 ↦ cmpt 5188 I cid 5530 ↾ cres 5635 ‘cfv 6496 ℩crio 7312 Basecbs 17083 LSpanclspn 20432 LHypclh 38447 LTrncltrn 38564 DVecHcdvh 39541 LCDualclcd 40049 HVMapchvm 40219 HDMap1chdma1 40254 HDMapchdma 40255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pr 5384 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-sn 4587 df-pr 4589 df-op 4593 df-ot 4595 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-hdmap 40257 |
This theorem is referenced by: hdmapcl 40293 hdmapval2lem 40294 |
Copyright terms: Public domain | W3C validator |