Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6dN Structured version   Visualization version   GIF version

Theorem mapdh6dN 41848
Description: Lemmma for mapdh6N 41856. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh.p + = (+g𝑈)
mapdh.a = (+g𝐶)
mapdh6d.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
mapdh6d.yz (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
mapdh6d.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh6d.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdh6d.w (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdh6d.wn (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
mapdh6dN (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   𝑤,   ,𝑍,𝑥   ,   ,𝐼,𝑥   + ,,𝑥   𝑥,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝐶(𝑥,𝑤)   𝐷(𝑤)   + (𝑤)   (𝑥,𝑤)   𝑄(𝑤,)   𝑅(𝑤)   𝑈(𝑥,𝑤)   𝐹(𝑤)   𝐻(𝑥,𝑤,)   𝐼(𝑤)   𝐽(𝑤)   𝐾(𝑥,𝑤,)   𝑀(𝑤)   (𝑤)   𝑁(𝑤)   𝑉(𝑥,𝑤,)   𝑊(𝑥,𝑤,)   𝑋(𝑤)   𝑌(𝑤)   0 (𝑤)   𝑍(𝑤)

Proof of Theorem mapdh6dN
StepHypRef Expression
1 mapdh.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 mapdh.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 mapdh.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 41701 . . . . 5 (𝜑𝐶 ∈ LMod)
5 mapdh.q . . . . . 6 𝑄 = (0g𝐶)
6 mapdh.i . . . . . 6 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
7 mapdh.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
8 mapdh.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
9 mapdh.v . . . . . 6 𝑉 = (Base‘𝑈)
10 mapdh.s . . . . . 6 = (-g𝑈)
11 mapdhc.o . . . . . 6 0 = (0g𝑈)
12 mapdh.n . . . . . 6 𝑁 = (LSpan‘𝑈)
13 mapdh.d . . . . . 6 𝐷 = (Base‘𝐶)
14 mapdh.r . . . . . 6 𝑅 = (-g𝐶)
15 mapdh.j . . . . . 6 𝐽 = (LSpan‘𝐶)
16 mapdhc.f . . . . . 6 (𝜑𝐹𝐷)
17 mapdh.mn . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
18 mapdhcl.x . . . . . 6 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
19 mapdh6d.w . . . . . . 7 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
2019eldifad 3909 . . . . . 6 (𝜑𝑤𝑉)
211, 8, 3dvhlvec 41218 . . . . . . . . 9 (𝜑𝑈 ∈ LVec)
2218eldifad 3909 . . . . . . . . 9 (𝜑𝑋𝑉)
23 mapdh6d.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
2423eldifad 3909 . . . . . . . . 9 (𝜑𝑌𝑉)
25 mapdh6d.wn . . . . . . . . 9 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
269, 12, 21, 20, 22, 24, 25lspindpi 21069 . . . . . . . 8 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})))
2726simpld 494 . . . . . . 7 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}))
2827necomd 2983 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤}))
295, 6, 1, 7, 8, 9, 10, 11, 12, 2, 13, 14, 15, 3, 16, 17, 18, 20, 28mapdhcl 41836 . . . . 5 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ∈ 𝐷)
30 mapdh.a . . . . . 6 = (+g𝐶)
3113, 30, 5lmod0vrid 20826 . . . . 5 ((𝐶 ∈ LMod ∧ (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ∈ 𝐷) → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) 𝑄) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
324, 29, 31syl2anc 584 . . . 4 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) 𝑄) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
3332adantr 480 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) 𝑄) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
34 oteq3 4833 . . . . . 6 ((𝑌 + 𝑍) = 0 → ⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩ = ⟨𝑋, 𝐹, 0 ⟩)
3534fveq2d 6826 . . . . 5 ((𝑌 + 𝑍) = 0 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = (𝐼‘⟨𝑋, 𝐹, 0 ⟩))
365, 6, 11, 18, 16mapdhval0 41834 . . . . 5 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = 𝑄)
3735, 36sylan9eqr 2788 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = 𝑄)
3837oveq2d 7362 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) 𝑄))
39 oveq2 7354 . . . . . 6 ((𝑌 + 𝑍) = 0 → (𝑤 + (𝑌 + 𝑍)) = (𝑤 + 0 ))
401, 8, 3dvhlmod 41219 . . . . . . 7 (𝜑𝑈 ∈ LMod)
41 mapdh.p . . . . . . . 8 + = (+g𝑈)
429, 41, 11lmod0vrid 20826 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑤𝑉) → (𝑤 + 0 ) = 𝑤)
4340, 20, 42syl2anc 584 . . . . . 6 (𝜑 → (𝑤 + 0 ) = 𝑤)
4439, 43sylan9eqr 2788 . . . . 5 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑤 + (𝑌 + 𝑍)) = 𝑤)
4544oteq3d 4836 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩ = ⟨𝑋, 𝐹, 𝑤⟩)
4645fveq2d 6826 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
4733, 38, 463eqtr4rd 2777 . 2 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)))
483adantr 480 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4916adantr 480 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝐹𝐷)
5017adantr 480 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
5118adantr 480 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
5219adantr 480 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑤 ∈ (𝑉 ∖ { 0 }))
53 mapdh6d.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
5453eldifad 3909 . . . . . 6 (𝜑𝑍𝑉)
559, 41lmodvacl 20808 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
5640, 24, 54, 55syl3anc 1373 . . . . 5 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
5756anim1i 615 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 ))
58 eldifsn 4735 . . . 4 ((𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 ))
5957, 58sylibr 234 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }))
60 mapdh6d.yz . . . . . . 7 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
61 mapdh6d.xn . . . . . . . . 9 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
629, 12, 21, 22, 24, 54, 61lspindpi 21069 . . . . . . . 8 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
6362simpld 494 . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
649, 41, 11, 12, 21, 18, 23, 53, 19, 60, 63, 25mapdindp1 41829 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
659, 41, 11, 12, 21, 18, 23, 53, 19, 60, 63, 25mapdindp2 41830 . . . . . 6 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)}))
669, 11, 12, 21, 18, 56, 20, 64, 65lspindp1 21070 . . . . 5 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑤, (𝑌 + 𝑍)})))
6766simprd 495 . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑤, (𝑌 + 𝑍)}))
6867adantr 480 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ¬ 𝑋 ∈ (𝑁‘{𝑤, (𝑌 + 𝑍)}))
6926simprd 495 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
709, 11, 12, 21, 19, 24, 69lspsnne1 21054 . . . . . . . 8 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑌}))
71 eqid 2731 . . . . . . . . . 10 (LSSum‘𝑈) = (LSSum‘𝑈)
729, 12, 71, 40, 24, 54lsmpr 21023 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑌, 𝑍}) = ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})))
7360oveq2d 7362 . . . . . . . . 9 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑌})) = ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})))
74 eqid 2731 . . . . . . . . . . . . 13 (LSubSp‘𝑈) = (LSubSp‘𝑈)
759, 74, 12lspsncl 20910 . . . . . . . . . . . 12 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
7640, 24, 75syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
7774lsssubg 20890 . . . . . . . . . . 11 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑈))
7840, 76, 77syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑈))
7971lsmidm 19575 . . . . . . . . . 10 ((𝑁‘{𝑌}) ∈ (SubGrp‘𝑈) → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑌})) = (𝑁‘{𝑌}))
8078, 79syl 17 . . . . . . . . 9 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑌})) = (𝑁‘{𝑌}))
8172, 73, 803eqtr2d 2772 . . . . . . . 8 (𝜑 → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑌}))
8270, 81neleqtrrd 2854 . . . . . . 7 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑍}))
839, 41, 12, 40, 24, 54, 20, 82lspindp4 21074 . . . . . 6 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑌, (𝑌 + 𝑍)}))
849, 12, 21, 20, 24, 56, 83lspindpi 21069 . . . . 5 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)})))
8584simprd 495 . . . 4 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
8685adantr 480 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
87 eqidd 2732 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
88 eqidd 2732 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩))
895, 6, 1, 7, 8, 9, 10, 11, 12, 2, 13, 14, 15, 48, 49, 50, 51, 41, 30, 52, 59, 68, 86, 87, 88mapdh6aN 41844 . 2 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)))
9047, 89pm2.61dane 3015 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  cdif 3894  ifcif 4472  {csn 4573  {cpr 4575  cotp 4581  cmpt 5170  cfv 6481  crio 7302  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Basecbs 17120  +gcplusg 17161  0gc0g 17343  -gcsg 18848  SubGrpcsubg 19033  LSSumclsm 19546  LModclmod 20793  LSubSpclss 20864  LSpanclspn 20904  HLchlt 39459  LHypclh 40093  DVecHcdvh 41187  LCDualclcd 41695  mapdcmpd 41733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-riotaBAD 39062
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-mre 17488  df-mrc 17489  df-acs 17491  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19229  df-oppg 19258  df-lsm 19548  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-nzr 20428  df-rlreg 20609  df-domn 20610  df-drng 20646  df-lmod 20795  df-lss 20865  df-lsp 20905  df-lvec 21037  df-lsatoms 39085  df-lshyp 39086  df-lcv 39128  df-lfl 39167  df-lkr 39195  df-ldual 39233  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-llines 39607  df-lplanes 39608  df-lvols 39609  df-lines 39610  df-psubsp 39612  df-pmap 39613  df-padd 39905  df-lhyp 40097  df-laut 40098  df-ldil 40213  df-ltrn 40214  df-trl 40268  df-tgrp 40852  df-tendo 40864  df-edring 40866  df-dveca 41112  df-disoa 41138  df-dvech 41188  df-dib 41248  df-dic 41282  df-dih 41338  df-doch 41457  df-djh 41504  df-lcdual 41696  df-mapd 41734
This theorem is referenced by:  mapdh6gN  41851
  Copyright terms: Public domain W3C validator