Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6dN Structured version   Visualization version   GIF version

Theorem mapdh6dN 41722
Description: Lemmma for mapdh6N 41730. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh.p + = (+g𝑈)
mapdh.a = (+g𝐶)
mapdh6d.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
mapdh6d.yz (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
mapdh6d.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh6d.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdh6d.w (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdh6d.wn (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
mapdh6dN (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   𝑤,   ,𝑍,𝑥   ,   ,𝐼,𝑥   + ,,𝑥   𝑥,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝐶(𝑥,𝑤)   𝐷(𝑤)   + (𝑤)   (𝑥,𝑤)   𝑄(𝑤,)   𝑅(𝑤)   𝑈(𝑥,𝑤)   𝐹(𝑤)   𝐻(𝑥,𝑤,)   𝐼(𝑤)   𝐽(𝑤)   𝐾(𝑥,𝑤,)   𝑀(𝑤)   (𝑤)   𝑁(𝑤)   𝑉(𝑥,𝑤,)   𝑊(𝑥,𝑤,)   𝑋(𝑤)   𝑌(𝑤)   0 (𝑤)   𝑍(𝑤)

Proof of Theorem mapdh6dN
StepHypRef Expression
1 mapdh.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 mapdh.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 mapdh.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 41575 . . . . 5 (𝜑𝐶 ∈ LMod)
5 mapdh.q . . . . . 6 𝑄 = (0g𝐶)
6 mapdh.i . . . . . 6 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
7 mapdh.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
8 mapdh.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
9 mapdh.v . . . . . 6 𝑉 = (Base‘𝑈)
10 mapdh.s . . . . . 6 = (-g𝑈)
11 mapdhc.o . . . . . 6 0 = (0g𝑈)
12 mapdh.n . . . . . 6 𝑁 = (LSpan‘𝑈)
13 mapdh.d . . . . . 6 𝐷 = (Base‘𝐶)
14 mapdh.r . . . . . 6 𝑅 = (-g𝐶)
15 mapdh.j . . . . . 6 𝐽 = (LSpan‘𝐶)
16 mapdhc.f . . . . . 6 (𝜑𝐹𝐷)
17 mapdh.mn . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
18 mapdhcl.x . . . . . 6 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
19 mapdh6d.w . . . . . . 7 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
2019eldifad 3975 . . . . . 6 (𝜑𝑤𝑉)
211, 8, 3dvhlvec 41092 . . . . . . . . 9 (𝜑𝑈 ∈ LVec)
2218eldifad 3975 . . . . . . . . 9 (𝜑𝑋𝑉)
23 mapdh6d.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
2423eldifad 3975 . . . . . . . . 9 (𝜑𝑌𝑉)
25 mapdh6d.wn . . . . . . . . 9 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
269, 12, 21, 20, 22, 24, 25lspindpi 21152 . . . . . . . 8 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})))
2726simpld 494 . . . . . . 7 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}))
2827necomd 2994 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤}))
295, 6, 1, 7, 8, 9, 10, 11, 12, 2, 13, 14, 15, 3, 16, 17, 18, 20, 28mapdhcl 41710 . . . . 5 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ∈ 𝐷)
30 mapdh.a . . . . . 6 = (+g𝐶)
3113, 30, 5lmod0vrid 20908 . . . . 5 ((𝐶 ∈ LMod ∧ (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ∈ 𝐷) → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) 𝑄) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
324, 29, 31syl2anc 584 . . . 4 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) 𝑄) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
3332adantr 480 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) 𝑄) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
34 oteq3 4889 . . . . . 6 ((𝑌 + 𝑍) = 0 → ⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩ = ⟨𝑋, 𝐹, 0 ⟩)
3534fveq2d 6911 . . . . 5 ((𝑌 + 𝑍) = 0 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = (𝐼‘⟨𝑋, 𝐹, 0 ⟩))
365, 6, 11, 18, 16mapdhval0 41708 . . . . 5 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = 𝑄)
3735, 36sylan9eqr 2797 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = 𝑄)
3837oveq2d 7447 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) 𝑄))
39 oveq2 7439 . . . . . 6 ((𝑌 + 𝑍) = 0 → (𝑤 + (𝑌 + 𝑍)) = (𝑤 + 0 ))
401, 8, 3dvhlmod 41093 . . . . . . 7 (𝜑𝑈 ∈ LMod)
41 mapdh.p . . . . . . . 8 + = (+g𝑈)
429, 41, 11lmod0vrid 20908 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑤𝑉) → (𝑤 + 0 ) = 𝑤)
4340, 20, 42syl2anc 584 . . . . . 6 (𝜑 → (𝑤 + 0 ) = 𝑤)
4439, 43sylan9eqr 2797 . . . . 5 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑤 + (𝑌 + 𝑍)) = 𝑤)
4544oteq3d 4892 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩ = ⟨𝑋, 𝐹, 𝑤⟩)
4645fveq2d 6911 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
4733, 38, 463eqtr4rd 2786 . 2 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)))
483adantr 480 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4916adantr 480 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝐹𝐷)
5017adantr 480 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
5118adantr 480 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
5219adantr 480 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑤 ∈ (𝑉 ∖ { 0 }))
53 mapdh6d.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
5453eldifad 3975 . . . . . 6 (𝜑𝑍𝑉)
559, 41lmodvacl 20890 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
5640, 24, 54, 55syl3anc 1370 . . . . 5 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
5756anim1i 615 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 ))
58 eldifsn 4791 . . . 4 ((𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 ))
5957, 58sylibr 234 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }))
60 mapdh6d.yz . . . . . . 7 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
61 mapdh6d.xn . . . . . . . . 9 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
629, 12, 21, 22, 24, 54, 61lspindpi 21152 . . . . . . . 8 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
6362simpld 494 . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
649, 41, 11, 12, 21, 18, 23, 53, 19, 60, 63, 25mapdindp1 41703 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
659, 41, 11, 12, 21, 18, 23, 53, 19, 60, 63, 25mapdindp2 41704 . . . . . 6 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)}))
669, 11, 12, 21, 18, 56, 20, 64, 65lspindp1 21153 . . . . 5 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑤, (𝑌 + 𝑍)})))
6766simprd 495 . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑤, (𝑌 + 𝑍)}))
6867adantr 480 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ¬ 𝑋 ∈ (𝑁‘{𝑤, (𝑌 + 𝑍)}))
6926simprd 495 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
709, 11, 12, 21, 19, 24, 69lspsnne1 21137 . . . . . . . 8 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑌}))
71 eqid 2735 . . . . . . . . . 10 (LSSum‘𝑈) = (LSSum‘𝑈)
729, 12, 71, 40, 24, 54lsmpr 21106 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑌, 𝑍}) = ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})))
7360oveq2d 7447 . . . . . . . . 9 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑌})) = ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})))
74 eqid 2735 . . . . . . . . . . . . 13 (LSubSp‘𝑈) = (LSubSp‘𝑈)
759, 74, 12lspsncl 20993 . . . . . . . . . . . 12 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
7640, 24, 75syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
7774lsssubg 20973 . . . . . . . . . . 11 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑈))
7840, 76, 77syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑈))
7971lsmidm 19696 . . . . . . . . . 10 ((𝑁‘{𝑌}) ∈ (SubGrp‘𝑈) → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑌})) = (𝑁‘{𝑌}))
8078, 79syl 17 . . . . . . . . 9 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑌})) = (𝑁‘{𝑌}))
8172, 73, 803eqtr2d 2781 . . . . . . . 8 (𝜑 → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑌}))
8270, 81neleqtrrd 2862 . . . . . . 7 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑍}))
839, 41, 12, 40, 24, 54, 20, 82lspindp4 21157 . . . . . 6 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑌, (𝑌 + 𝑍)}))
849, 12, 21, 20, 24, 56, 83lspindpi 21152 . . . . 5 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)})))
8584simprd 495 . . . 4 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
8685adantr 480 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
87 eqidd 2736 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
88 eqidd 2736 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩))
895, 6, 1, 7, 8, 9, 10, 11, 12, 2, 13, 14, 15, 48, 49, 50, 51, 41, 30, 52, 59, 68, 86, 87, 88mapdh6aN 41718 . 2 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)))
9047, 89pm2.61dane 3027 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  cdif 3960  ifcif 4531  {csn 4631  {cpr 4633  cotp 4639  cmpt 5231  cfv 6563  crio 7387  (class class class)co 7431  1st c1st 8011  2nd c2nd 8012  Basecbs 17245  +gcplusg 17298  0gc0g 17486  -gcsg 18966  SubGrpcsubg 19151  LSSumclsm 19667  LModclmod 20875  LSubSpclss 20947  LSpanclspn 20987  HLchlt 39332  LHypclh 39967  DVecHcdvh 41061  LCDualclcd 41569  mapdcmpd 41607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-riotaBAD 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-undef 8297  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-0g 17488  df-mre 17631  df-mrc 17632  df-acs 17634  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cntz 19348  df-oppg 19377  df-lsm 19669  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-nzr 20530  df-rlreg 20711  df-domn 20712  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lvec 21120  df-lsatoms 38958  df-lshyp 38959  df-lcv 39001  df-lfl 39040  df-lkr 39068  df-ldual 39106  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142  df-tgrp 40726  df-tendo 40738  df-edring 40740  df-dveca 40986  df-disoa 41012  df-dvech 41062  df-dib 41122  df-dic 41156  df-dih 41212  df-doch 41331  df-djh 41378  df-lcdual 41570  df-mapd 41608
This theorem is referenced by:  mapdh6gN  41725
  Copyright terms: Public domain W3C validator