Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh8 | Structured version Visualization version GIF version |
Description: Part (8) in [Baer] p. 48. Given a reference vector 𝑋, the value of function 𝐼 at a vector 𝑇 is independent of the choice of auxiliary vectors 𝑌 and 𝑍. Unlike Baer's, our version does not require 𝑋, 𝑌, and 𝑍 to be independent, and also is defined for all 𝑌 and 𝑍 that are not colinear with 𝑋 or 𝑇. We do this to make the definition of Baer's sigma function more straightforward. (This part eliminates 𝑇 ≠ 0.) (Contributed by NM, 13-May-2015.) |
Ref | Expression |
---|---|
mapdh8a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdh8a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdh8a.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdh8a.s | ⊢ − = (-g‘𝑈) |
mapdh8a.o | ⊢ 0 = (0g‘𝑈) |
mapdh8a.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdh8a.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdh8a.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdh8a.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdh8a.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh8a.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdh8a.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdh8a.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh8a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdh8h.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
mapdh8h.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
mapdh8i.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdh8i.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdh8i.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
mapdh8i.xy | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
mapdh8i.xz | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
mapdh8i.yt | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
mapdh8i.zt | ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) |
mapdh8.t | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
Ref | Expression |
---|---|
mapdh8 | ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh8a.q | . . . . . 6 ⊢ 𝑄 = (0g‘𝐶) | |
2 | mapdh8a.i | . . . . . 6 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
3 | mapdh8a.o | . . . . . 6 ⊢ 0 = (0g‘𝑈) | |
4 | mapdh8i.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
5 | fvexd 6771 | . . . . . 6 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ V) | |
6 | 1, 2, 3, 4, 5 | mapdhval0 39666 | . . . . 5 ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 0 〉) = 𝑄) |
7 | mapdh8i.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
8 | fvexd 6771 | . . . . . 6 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) ∈ V) | |
9 | 1, 2, 3, 7, 8 | mapdhval0 39666 | . . . . 5 ⊢ (𝜑 → (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 0 〉) = 𝑄) |
10 | 6, 9 | eqtr4d 2781 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 0 〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 0 〉)) |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 = 0 ) → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 0 〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 0 〉)) |
12 | oteq3 4812 | . . . . 5 ⊢ (𝑇 = 0 → 〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉 = 〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 0 〉) | |
13 | 12 | fveq2d 6760 | . . . 4 ⊢ (𝑇 = 0 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 0 〉)) |
14 | 13 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑇 = 0 ) → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 0 〉)) |
15 | oteq3 4812 | . . . . 5 ⊢ (𝑇 = 0 → 〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉 = 〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 0 〉) | |
16 | 15 | fveq2d 6760 | . . . 4 ⊢ (𝑇 = 0 → (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 0 〉)) |
17 | 16 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑇 = 0 ) → (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 0 〉)) |
18 | 11, 14, 17 | 3eqtr4d 2788 | . 2 ⊢ ((𝜑 ∧ 𝑇 = 0 ) → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) |
19 | mapdh8a.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
20 | mapdh8a.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
21 | mapdh8a.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
22 | mapdh8a.s | . . 3 ⊢ − = (-g‘𝑈) | |
23 | mapdh8a.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
24 | mapdh8a.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
25 | mapdh8a.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
26 | mapdh8a.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
27 | mapdh8a.j | . . 3 ⊢ 𝐽 = (LSpan‘𝐶) | |
28 | mapdh8a.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
29 | mapdh8a.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
30 | 29 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
31 | mapdh8h.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
32 | 31 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → 𝐹 ∈ 𝐷) |
33 | mapdh8h.mn | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
34 | 33 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
35 | mapdh8i.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
36 | 35 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
37 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
38 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → 𝑍 ∈ (𝑉 ∖ { 0 })) |
39 | mapdh8i.xy | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
40 | 39 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
41 | mapdh8i.xz | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) | |
42 | 41 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
43 | mapdh8i.yt | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) | |
44 | 43 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
45 | mapdh8i.zt | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) | |
46 | 45 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) |
47 | mapdh8.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
48 | 47 | anim1i 614 | . . . 4 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → (𝑇 ∈ 𝑉 ∧ 𝑇 ≠ 0 )) |
49 | eldifsn 4717 | . . . 4 ⊢ (𝑇 ∈ (𝑉 ∖ { 0 }) ↔ (𝑇 ∈ 𝑉 ∧ 𝑇 ≠ 0 )) | |
50 | 48, 49 | sylibr 233 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → 𝑇 ∈ (𝑉 ∖ { 0 })) |
51 | 19, 20, 21, 22, 3, 23, 24, 25, 26, 1, 27, 28, 2, 30, 32, 34, 36, 37, 38, 40, 42, 44, 46, 50 | mapdh8j 39728 | . 2 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) |
52 | 18, 51 | pm2.61dane 3031 | 1 ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∖ cdif 3880 ifcif 4456 {csn 4558 〈cotp 4566 ↦ cmpt 5153 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 Basecbs 16840 0gc0g 17067 -gcsg 18494 LSpanclspn 20148 HLchlt 37291 LHypclh 37925 DVecHcdvh 39019 LCDualclcd 39527 mapdcmpd 39565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-undef 8060 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-0g 17069 df-mre 17212 df-mrc 17213 df-acs 17215 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-cntz 18838 df-oppg 18865 df-lsm 19156 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lvec 20280 df-lsatoms 36917 df-lshyp 36918 df-lcv 36960 df-lfl 36999 df-lkr 37027 df-ldual 37065 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-llines 37439 df-lplanes 37440 df-lvols 37441 df-lines 37442 df-psubsp 37444 df-pmap 37445 df-padd 37737 df-lhyp 37929 df-laut 37930 df-ldil 38045 df-ltrn 38046 df-trl 38100 df-tgrp 38684 df-tendo 38696 df-edring 38698 df-dveca 38944 df-disoa 38970 df-dvech 39020 df-dib 39080 df-dic 39114 df-dih 39170 df-doch 39289 df-djh 39336 df-lcdual 39528 df-mapd 39566 |
This theorem is referenced by: mapdh9a 39730 mapdh9aOLDN 39731 |
Copyright terms: Public domain | W3C validator |