| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh8 | Structured version Visualization version GIF version | ||
| Description: Part (8) in [Baer] p. 48. Given a reference vector 𝑋, the value of function 𝐼 at a vector 𝑇 is independent of the choice of auxiliary vectors 𝑌 and 𝑍. Unlike Baer's, our version does not require 𝑋, 𝑌, and 𝑍 to be independent, and also is defined for all 𝑌 and 𝑍 that are not colinear with 𝑋 or 𝑇. We do this to make the definition of Baer's sigma function more straightforward. (This part eliminates 𝑇 ≠ 0.) (Contributed by NM, 13-May-2015.) |
| Ref | Expression |
|---|---|
| mapdh8a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdh8a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdh8a.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdh8a.s | ⊢ − = (-g‘𝑈) |
| mapdh8a.o | ⊢ 0 = (0g‘𝑈) |
| mapdh8a.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdh8a.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdh8a.d | ⊢ 𝐷 = (Base‘𝐶) |
| mapdh8a.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdh8a.q | ⊢ 𝑄 = (0g‘𝐶) |
| mapdh8a.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdh8a.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdh8a.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
| mapdh8a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdh8h.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| mapdh8h.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| mapdh8i.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| mapdh8i.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| mapdh8i.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| mapdh8i.xy | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| mapdh8i.xz | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
| mapdh8i.yt | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
| mapdh8i.zt | ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) |
| mapdh8.t | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| mapdh8 | ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdh8a.q | . . . . . 6 ⊢ 𝑄 = (0g‘𝐶) | |
| 2 | mapdh8a.i | . . . . . 6 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
| 3 | mapdh8a.o | . . . . . 6 ⊢ 0 = (0g‘𝑈) | |
| 4 | mapdh8i.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 5 | fvexd 6837 | . . . . . 6 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ V) | |
| 6 | 1, 2, 3, 4, 5 | mapdhval0 41834 | . . . . 5 ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 0 〉) = 𝑄) |
| 7 | mapdh8i.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
| 8 | fvexd 6837 | . . . . . 6 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) ∈ V) | |
| 9 | 1, 2, 3, 7, 8 | mapdhval0 41834 | . . . . 5 ⊢ (𝜑 → (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 0 〉) = 𝑄) |
| 10 | 6, 9 | eqtr4d 2769 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 0 〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 0 〉)) |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 = 0 ) → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 0 〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 0 〉)) |
| 12 | oteq3 4833 | . . . . 5 ⊢ (𝑇 = 0 → 〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉 = 〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 0 〉) | |
| 13 | 12 | fveq2d 6826 | . . . 4 ⊢ (𝑇 = 0 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 0 〉)) |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑇 = 0 ) → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 0 〉)) |
| 15 | oteq3 4833 | . . . . 5 ⊢ (𝑇 = 0 → 〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉 = 〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 0 〉) | |
| 16 | 15 | fveq2d 6826 | . . . 4 ⊢ (𝑇 = 0 → (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 0 〉)) |
| 17 | 16 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑇 = 0 ) → (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 0 〉)) |
| 18 | 11, 14, 17 | 3eqtr4d 2776 | . 2 ⊢ ((𝜑 ∧ 𝑇 = 0 ) → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) |
| 19 | mapdh8a.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 20 | mapdh8a.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 21 | mapdh8a.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 22 | mapdh8a.s | . . 3 ⊢ − = (-g‘𝑈) | |
| 23 | mapdh8a.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 24 | mapdh8a.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 25 | mapdh8a.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
| 26 | mapdh8a.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
| 27 | mapdh8a.j | . . 3 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 28 | mapdh8a.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 29 | mapdh8a.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 30 | 29 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 31 | mapdh8h.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 32 | 31 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → 𝐹 ∈ 𝐷) |
| 33 | mapdh8h.mn | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
| 34 | 33 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| 35 | mapdh8i.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 36 | 35 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 37 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 38 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| 39 | mapdh8i.xy | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 40 | 39 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 41 | mapdh8i.xz | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) | |
| 42 | 41 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
| 43 | mapdh8i.yt | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) | |
| 44 | 43 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
| 45 | mapdh8i.zt | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) | |
| 46 | 45 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) |
| 47 | mapdh8.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
| 48 | 47 | anim1i 615 | . . . 4 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → (𝑇 ∈ 𝑉 ∧ 𝑇 ≠ 0 )) |
| 49 | eldifsn 4735 | . . . 4 ⊢ (𝑇 ∈ (𝑉 ∖ { 0 }) ↔ (𝑇 ∈ 𝑉 ∧ 𝑇 ≠ 0 )) | |
| 50 | 48, 49 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → 𝑇 ∈ (𝑉 ∖ { 0 })) |
| 51 | 19, 20, 21, 22, 3, 23, 24, 25, 26, 1, 27, 28, 2, 30, 32, 34, 36, 37, 38, 40, 42, 44, 46, 50 | mapdh8j 41896 | . 2 ⊢ ((𝜑 ∧ 𝑇 ≠ 0 ) → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) |
| 52 | 18, 51 | pm2.61dane 3015 | 1 ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∖ cdif 3894 ifcif 4472 {csn 4573 〈cotp 4581 ↦ cmpt 5170 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 Basecbs 17120 0gc0g 17343 -gcsg 18848 LSpanclspn 20904 HLchlt 39459 LHypclh 40093 DVecHcdvh 41187 LCDualclcd 41695 mapdcmpd 41733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-riotaBAD 39062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-undef 8203 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-0g 17345 df-mre 17488 df-mrc 17489 df-acs 17491 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-cntz 19229 df-oppg 19258 df-lsm 19548 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-nzr 20428 df-rlreg 20609 df-domn 20610 df-drng 20646 df-lmod 20795 df-lss 20865 df-lsp 20905 df-lvec 21037 df-lsatoms 39085 df-lshyp 39086 df-lcv 39128 df-lfl 39167 df-lkr 39195 df-ldual 39233 df-oposet 39285 df-ol 39287 df-oml 39288 df-covers 39375 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 df-llines 39607 df-lplanes 39608 df-lvols 39609 df-lines 39610 df-psubsp 39612 df-pmap 39613 df-padd 39905 df-lhyp 40097 df-laut 40098 df-ldil 40213 df-ltrn 40214 df-trl 40268 df-tgrp 40852 df-tendo 40864 df-edring 40866 df-dveca 41112 df-disoa 41138 df-dvech 41188 df-dib 41248 df-dic 41282 df-dih 41338 df-doch 41457 df-djh 41504 df-lcdual 41696 df-mapd 41734 |
| This theorem is referenced by: mapdh9a 41898 mapdh9aOLDN 41899 |
| Copyright terms: Public domain | W3C validator |