![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh8 | Structured version Visualization version GIF version |
Description: Part (8) in [Baer] p. 48. Given a reference vector π, the value of function πΌ at a vector π is independent of the choice of auxiliary vectors π and π. Unlike Baer's, our version does not require π, π, and π to be independent, and also is defined for all π and π that are not colinear with π or π. We do this to make the definition of Baer's sigma function more straightforward. (This part eliminates π β 0.) (Contributed by NM, 13-May-2015.) |
Ref | Expression |
---|---|
mapdh8a.h | β’ π» = (LHypβπΎ) |
mapdh8a.u | β’ π = ((DVecHβπΎ)βπ) |
mapdh8a.v | β’ π = (Baseβπ) |
mapdh8a.s | β’ β = (-gβπ) |
mapdh8a.o | β’ 0 = (0gβπ) |
mapdh8a.n | β’ π = (LSpanβπ) |
mapdh8a.c | β’ πΆ = ((LCDualβπΎ)βπ) |
mapdh8a.d | β’ π· = (BaseβπΆ) |
mapdh8a.r | β’ π = (-gβπΆ) |
mapdh8a.q | β’ π = (0gβπΆ) |
mapdh8a.j | β’ π½ = (LSpanβπΆ) |
mapdh8a.m | β’ π = ((mapdβπΎ)βπ) |
mapdh8a.i | β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) |
mapdh8a.k | β’ (π β (πΎ β HL β§ π β π»)) |
mapdh8h.f | β’ (π β πΉ β π·) |
mapdh8h.mn | β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) |
mapdh8i.x | β’ (π β π β (π β { 0 })) |
mapdh8i.y | β’ (π β π β (π β { 0 })) |
mapdh8i.z | β’ (π β π β (π β { 0 })) |
mapdh8i.xy | β’ (π β (πβ{π}) β (πβ{π})) |
mapdh8i.xz | β’ (π β (πβ{π}) β (πβ{π})) |
mapdh8i.yt | β’ (π β (πβ{π}) β (πβ{π})) |
mapdh8i.zt | β’ (π β (πβ{π}) β (πβ{π})) |
mapdh8.t | β’ (π β π β π) |
Ref | Expression |
---|---|
mapdh8 | β’ (π β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh8a.q | . . . . . 6 β’ π = (0gβπΆ) | |
2 | mapdh8a.i | . . . . . 6 β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) | |
3 | mapdh8a.o | . . . . . 6 β’ 0 = (0gβπ) | |
4 | mapdh8i.y | . . . . . 6 β’ (π β π β (π β { 0 })) | |
5 | fvexd 6906 | . . . . . 6 β’ (π β (πΌββ¨π, πΉ, πβ©) β V) | |
6 | 1, 2, 3, 4, 5 | mapdhval0 41060 | . . . . 5 β’ (π β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), 0 β©) = π) |
7 | mapdh8i.z | . . . . . 6 β’ (π β π β (π β { 0 })) | |
8 | fvexd 6906 | . . . . . 6 β’ (π β (πΌββ¨π, πΉ, πβ©) β V) | |
9 | 1, 2, 3, 7, 8 | mapdhval0 41060 | . . . . 5 β’ (π β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), 0 β©) = π) |
10 | 6, 9 | eqtr4d 2774 | . . . 4 β’ (π β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), 0 β©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), 0 β©)) |
11 | 10 | adantr 480 | . . 3 β’ ((π β§ π = 0 ) β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), 0 β©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), 0 β©)) |
12 | oteq3 4884 | . . . . 5 β’ (π = 0 β β¨π, (πΌββ¨π, πΉ, πβ©), πβ© = β¨π, (πΌββ¨π, πΉ, πβ©), 0 β©) | |
13 | 12 | fveq2d 6895 | . . . 4 β’ (π = 0 β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), 0 β©)) |
14 | 13 | adantl 481 | . . 3 β’ ((π β§ π = 0 ) β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), 0 β©)) |
15 | oteq3 4884 | . . . . 5 β’ (π = 0 β β¨π, (πΌββ¨π, πΉ, πβ©), πβ© = β¨π, (πΌββ¨π, πΉ, πβ©), 0 β©) | |
16 | 15 | fveq2d 6895 | . . . 4 β’ (π = 0 β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), 0 β©)) |
17 | 16 | adantl 481 | . . 3 β’ ((π β§ π = 0 ) β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), 0 β©)) |
18 | 11, 14, 17 | 3eqtr4d 2781 | . 2 β’ ((π β§ π = 0 ) β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©)) |
19 | mapdh8a.h | . . 3 β’ π» = (LHypβπΎ) | |
20 | mapdh8a.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
21 | mapdh8a.v | . . 3 β’ π = (Baseβπ) | |
22 | mapdh8a.s | . . 3 β’ β = (-gβπ) | |
23 | mapdh8a.n | . . 3 β’ π = (LSpanβπ) | |
24 | mapdh8a.c | . . 3 β’ πΆ = ((LCDualβπΎ)βπ) | |
25 | mapdh8a.d | . . 3 β’ π· = (BaseβπΆ) | |
26 | mapdh8a.r | . . 3 β’ π = (-gβπΆ) | |
27 | mapdh8a.j | . . 3 β’ π½ = (LSpanβπΆ) | |
28 | mapdh8a.m | . . 3 β’ π = ((mapdβπΎ)βπ) | |
29 | mapdh8a.k | . . . 4 β’ (π β (πΎ β HL β§ π β π»)) | |
30 | 29 | adantr 480 | . . 3 β’ ((π β§ π β 0 ) β (πΎ β HL β§ π β π»)) |
31 | mapdh8h.f | . . . 4 β’ (π β πΉ β π·) | |
32 | 31 | adantr 480 | . . 3 β’ ((π β§ π β 0 ) β πΉ β π·) |
33 | mapdh8h.mn | . . . 4 β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) | |
34 | 33 | adantr 480 | . . 3 β’ ((π β§ π β 0 ) β (πβ(πβ{π})) = (π½β{πΉ})) |
35 | mapdh8i.x | . . . 4 β’ (π β π β (π β { 0 })) | |
36 | 35 | adantr 480 | . . 3 β’ ((π β§ π β 0 ) β π β (π β { 0 })) |
37 | 4 | adantr 480 | . . 3 β’ ((π β§ π β 0 ) β π β (π β { 0 })) |
38 | 7 | adantr 480 | . . 3 β’ ((π β§ π β 0 ) β π β (π β { 0 })) |
39 | mapdh8i.xy | . . . 4 β’ (π β (πβ{π}) β (πβ{π})) | |
40 | 39 | adantr 480 | . . 3 β’ ((π β§ π β 0 ) β (πβ{π}) β (πβ{π})) |
41 | mapdh8i.xz | . . . 4 β’ (π β (πβ{π}) β (πβ{π})) | |
42 | 41 | adantr 480 | . . 3 β’ ((π β§ π β 0 ) β (πβ{π}) β (πβ{π})) |
43 | mapdh8i.yt | . . . 4 β’ (π β (πβ{π}) β (πβ{π})) | |
44 | 43 | adantr 480 | . . 3 β’ ((π β§ π β 0 ) β (πβ{π}) β (πβ{π})) |
45 | mapdh8i.zt | . . . 4 β’ (π β (πβ{π}) β (πβ{π})) | |
46 | 45 | adantr 480 | . . 3 β’ ((π β§ π β 0 ) β (πβ{π}) β (πβ{π})) |
47 | mapdh8.t | . . . . 5 β’ (π β π β π) | |
48 | 47 | anim1i 614 | . . . 4 β’ ((π β§ π β 0 ) β (π β π β§ π β 0 )) |
49 | eldifsn 4790 | . . . 4 β’ (π β (π β { 0 }) β (π β π β§ π β 0 )) | |
50 | 48, 49 | sylibr 233 | . . 3 β’ ((π β§ π β 0 ) β π β (π β { 0 })) |
51 | 19, 20, 21, 22, 3, 23, 24, 25, 26, 1, 27, 28, 2, 30, 32, 34, 36, 37, 38, 40, 42, 44, 46, 50 | mapdh8j 41122 | . 2 β’ ((π β§ π β 0 ) β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©)) |
52 | 18, 51 | pm2.61dane 3028 | 1 β’ (π β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β wne 2939 Vcvv 3473 β cdif 3945 ifcif 4528 {csn 4628 β¨cotp 4636 β¦ cmpt 5231 βcfv 6543 β©crio 7367 (class class class)co 7412 1st c1st 7977 2nd c2nd 7978 Basecbs 17151 0gc0g 17392 -gcsg 18863 LSpanclspn 20814 HLchlt 38684 LHypclh 39319 DVecHcdvh 40413 LCDualclcd 40921 mapdcmpd 40959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-riotaBAD 38287 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-undef 8264 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-0g 17394 df-mre 17537 df-mrc 17538 df-acs 17540 df-proset 18258 df-poset 18276 df-plt 18293 df-lub 18309 df-glb 18310 df-join 18311 df-meet 18312 df-p0 18388 df-p1 18389 df-lat 18395 df-clat 18462 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-grp 18864 df-minusg 18865 df-sbg 18866 df-subg 19046 df-cntz 19229 df-oppg 19258 df-lsm 19552 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-dvr 20299 df-drng 20585 df-lmod 20704 df-lss 20775 df-lsp 20815 df-lvec 20947 df-lsatoms 38310 df-lshyp 38311 df-lcv 38353 df-lfl 38392 df-lkr 38420 df-ldual 38458 df-oposet 38510 df-ol 38512 df-oml 38513 df-covers 38600 df-ats 38601 df-atl 38632 df-cvlat 38656 df-hlat 38685 df-llines 38833 df-lplanes 38834 df-lvols 38835 df-lines 38836 df-psubsp 38838 df-pmap 38839 df-padd 39131 df-lhyp 39323 df-laut 39324 df-ldil 39439 df-ltrn 39440 df-trl 39494 df-tgrp 40078 df-tendo 40090 df-edring 40092 df-dveca 40338 df-disoa 40364 df-dvech 40414 df-dib 40474 df-dic 40508 df-dih 40564 df-doch 40683 df-djh 40730 df-lcdual 40922 df-mapd 40960 |
This theorem is referenced by: mapdh9a 41124 mapdh9aOLDN 41125 |
Copyright terms: Public domain | W3C validator |