![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh8 | Structured version Visualization version GIF version |
Description: Part (8) in [Baer] p. 48. Given a reference vector π, the value of function πΌ at a vector π is independent of the choice of auxiliary vectors π and π. Unlike Baer's, our version does not require π, π, and π to be independent, and also is defined for all π and π that are not colinear with π or π. We do this to make the definition of Baer's sigma function more straightforward. (This part eliminates π β 0.) (Contributed by NM, 13-May-2015.) |
Ref | Expression |
---|---|
mapdh8a.h | β’ π» = (LHypβπΎ) |
mapdh8a.u | β’ π = ((DVecHβπΎ)βπ) |
mapdh8a.v | β’ π = (Baseβπ) |
mapdh8a.s | β’ β = (-gβπ) |
mapdh8a.o | β’ 0 = (0gβπ) |
mapdh8a.n | β’ π = (LSpanβπ) |
mapdh8a.c | β’ πΆ = ((LCDualβπΎ)βπ) |
mapdh8a.d | β’ π· = (BaseβπΆ) |
mapdh8a.r | β’ π = (-gβπΆ) |
mapdh8a.q | β’ π = (0gβπΆ) |
mapdh8a.j | β’ π½ = (LSpanβπΆ) |
mapdh8a.m | β’ π = ((mapdβπΎ)βπ) |
mapdh8a.i | β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) |
mapdh8a.k | β’ (π β (πΎ β HL β§ π β π»)) |
mapdh8h.f | β’ (π β πΉ β π·) |
mapdh8h.mn | β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) |
mapdh8i.x | β’ (π β π β (π β { 0 })) |
mapdh8i.y | β’ (π β π β (π β { 0 })) |
mapdh8i.z | β’ (π β π β (π β { 0 })) |
mapdh8i.xy | β’ (π β (πβ{π}) β (πβ{π})) |
mapdh8i.xz | β’ (π β (πβ{π}) β (πβ{π})) |
mapdh8i.yt | β’ (π β (πβ{π}) β (πβ{π})) |
mapdh8i.zt | β’ (π β (πβ{π}) β (πβ{π})) |
mapdh8.t | β’ (π β π β π) |
Ref | Expression |
---|---|
mapdh8 | β’ (π β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh8a.q | . . . . . 6 β’ π = (0gβπΆ) | |
2 | mapdh8a.i | . . . . . 6 β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) | |
3 | mapdh8a.o | . . . . . 6 β’ 0 = (0gβπ) | |
4 | mapdh8i.y | . . . . . 6 β’ (π β π β (π β { 0 })) | |
5 | fvexd 6903 | . . . . . 6 β’ (π β (πΌββ¨π, πΉ, πβ©) β V) | |
6 | 1, 2, 3, 4, 5 | mapdhval0 40534 | . . . . 5 β’ (π β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), 0 β©) = π) |
7 | mapdh8i.z | . . . . . 6 β’ (π β π β (π β { 0 })) | |
8 | fvexd 6903 | . . . . . 6 β’ (π β (πΌββ¨π, πΉ, πβ©) β V) | |
9 | 1, 2, 3, 7, 8 | mapdhval0 40534 | . . . . 5 β’ (π β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), 0 β©) = π) |
10 | 6, 9 | eqtr4d 2776 | . . . 4 β’ (π β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), 0 β©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), 0 β©)) |
11 | 10 | adantr 482 | . . 3 β’ ((π β§ π = 0 ) β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), 0 β©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), 0 β©)) |
12 | oteq3 4883 | . . . . 5 β’ (π = 0 β β¨π, (πΌββ¨π, πΉ, πβ©), πβ© = β¨π, (πΌββ¨π, πΉ, πβ©), 0 β©) | |
13 | 12 | fveq2d 6892 | . . . 4 β’ (π = 0 β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), 0 β©)) |
14 | 13 | adantl 483 | . . 3 β’ ((π β§ π = 0 ) β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), 0 β©)) |
15 | oteq3 4883 | . . . . 5 β’ (π = 0 β β¨π, (πΌββ¨π, πΉ, πβ©), πβ© = β¨π, (πΌββ¨π, πΉ, πβ©), 0 β©) | |
16 | 15 | fveq2d 6892 | . . . 4 β’ (π = 0 β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), 0 β©)) |
17 | 16 | adantl 483 | . . 3 β’ ((π β§ π = 0 ) β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), 0 β©)) |
18 | 11, 14, 17 | 3eqtr4d 2783 | . 2 β’ ((π β§ π = 0 ) β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©)) |
19 | mapdh8a.h | . . 3 β’ π» = (LHypβπΎ) | |
20 | mapdh8a.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
21 | mapdh8a.v | . . 3 β’ π = (Baseβπ) | |
22 | mapdh8a.s | . . 3 β’ β = (-gβπ) | |
23 | mapdh8a.n | . . 3 β’ π = (LSpanβπ) | |
24 | mapdh8a.c | . . 3 β’ πΆ = ((LCDualβπΎ)βπ) | |
25 | mapdh8a.d | . . 3 β’ π· = (BaseβπΆ) | |
26 | mapdh8a.r | . . 3 β’ π = (-gβπΆ) | |
27 | mapdh8a.j | . . 3 β’ π½ = (LSpanβπΆ) | |
28 | mapdh8a.m | . . 3 β’ π = ((mapdβπΎ)βπ) | |
29 | mapdh8a.k | . . . 4 β’ (π β (πΎ β HL β§ π β π»)) | |
30 | 29 | adantr 482 | . . 3 β’ ((π β§ π β 0 ) β (πΎ β HL β§ π β π»)) |
31 | mapdh8h.f | . . . 4 β’ (π β πΉ β π·) | |
32 | 31 | adantr 482 | . . 3 β’ ((π β§ π β 0 ) β πΉ β π·) |
33 | mapdh8h.mn | . . . 4 β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) | |
34 | 33 | adantr 482 | . . 3 β’ ((π β§ π β 0 ) β (πβ(πβ{π})) = (π½β{πΉ})) |
35 | mapdh8i.x | . . . 4 β’ (π β π β (π β { 0 })) | |
36 | 35 | adantr 482 | . . 3 β’ ((π β§ π β 0 ) β π β (π β { 0 })) |
37 | 4 | adantr 482 | . . 3 β’ ((π β§ π β 0 ) β π β (π β { 0 })) |
38 | 7 | adantr 482 | . . 3 β’ ((π β§ π β 0 ) β π β (π β { 0 })) |
39 | mapdh8i.xy | . . . 4 β’ (π β (πβ{π}) β (πβ{π})) | |
40 | 39 | adantr 482 | . . 3 β’ ((π β§ π β 0 ) β (πβ{π}) β (πβ{π})) |
41 | mapdh8i.xz | . . . 4 β’ (π β (πβ{π}) β (πβ{π})) | |
42 | 41 | adantr 482 | . . 3 β’ ((π β§ π β 0 ) β (πβ{π}) β (πβ{π})) |
43 | mapdh8i.yt | . . . 4 β’ (π β (πβ{π}) β (πβ{π})) | |
44 | 43 | adantr 482 | . . 3 β’ ((π β§ π β 0 ) β (πβ{π}) β (πβ{π})) |
45 | mapdh8i.zt | . . . 4 β’ (π β (πβ{π}) β (πβ{π})) | |
46 | 45 | adantr 482 | . . 3 β’ ((π β§ π β 0 ) β (πβ{π}) β (πβ{π})) |
47 | mapdh8.t | . . . . 5 β’ (π β π β π) | |
48 | 47 | anim1i 616 | . . . 4 β’ ((π β§ π β 0 ) β (π β π β§ π β 0 )) |
49 | eldifsn 4789 | . . . 4 β’ (π β (π β { 0 }) β (π β π β§ π β 0 )) | |
50 | 48, 49 | sylibr 233 | . . 3 β’ ((π β§ π β 0 ) β π β (π β { 0 })) |
51 | 19, 20, 21, 22, 3, 23, 24, 25, 26, 1, 27, 28, 2, 30, 32, 34, 36, 37, 38, 40, 42, 44, 46, 50 | mapdh8j 40596 | . 2 β’ ((π β§ π β 0 ) β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©)) |
52 | 18, 51 | pm2.61dane 3030 | 1 β’ (π β (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©) = (πΌββ¨π, (πΌββ¨π, πΉ, πβ©), πβ©)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β wne 2941 Vcvv 3475 β cdif 3944 ifcif 4527 {csn 4627 β¨cotp 4635 β¦ cmpt 5230 βcfv 6540 β©crio 7359 (class class class)co 7404 1st c1st 7968 2nd c2nd 7969 Basecbs 17140 0gc0g 17381 -gcsg 18817 LSpanclspn 20570 HLchlt 38158 LHypclh 38793 DVecHcdvh 39887 LCDualclcd 40395 mapdcmpd 40433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-riotaBAD 37761 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-ot 4636 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7665 df-om 7851 df-1st 7970 df-2nd 7971 df-tpos 8206 df-undef 8253 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-0g 17383 df-mre 17526 df-mrc 17527 df-acs 17529 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-p1 18375 df-lat 18381 df-clat 18448 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-subg 18997 df-cntz 19175 df-oppg 19203 df-lsm 19497 df-cmn 19643 df-abl 19644 df-mgp 19980 df-ur 19997 df-ring 20049 df-oppr 20139 df-dvdsr 20160 df-unit 20161 df-invr 20191 df-dvr 20204 df-drng 20306 df-lmod 20461 df-lss 20531 df-lsp 20571 df-lvec 20702 df-lsatoms 37784 df-lshyp 37785 df-lcv 37827 df-lfl 37866 df-lkr 37894 df-ldual 37932 df-oposet 37984 df-ol 37986 df-oml 37987 df-covers 38074 df-ats 38075 df-atl 38106 df-cvlat 38130 df-hlat 38159 df-llines 38307 df-lplanes 38308 df-lvols 38309 df-lines 38310 df-psubsp 38312 df-pmap 38313 df-padd 38605 df-lhyp 38797 df-laut 38798 df-ldil 38913 df-ltrn 38914 df-trl 38968 df-tgrp 39552 df-tendo 39564 df-edring 39566 df-dveca 39812 df-disoa 39838 df-dvech 39888 df-dib 39948 df-dic 39982 df-dih 40038 df-doch 40157 df-djh 40204 df-lcdual 40396 df-mapd 40434 |
This theorem is referenced by: mapdh9a 40598 mapdh9aOLDN 40599 |
Copyright terms: Public domain | W3C validator |