| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapval3N | Structured version Visualization version GIF version | ||
| Description: Value of map from vectors to functionals at arguments not colinear with the reference vector 𝐸. (Contributed by NM, 17-May-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hdmapval3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmapval3.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 |
| hdmapval3.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmapval3.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmapval3.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmapval3.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmapval3.d | ⊢ 𝐷 = (Base‘𝐶) |
| hdmapval3.j | ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) |
| hdmapval3.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
| hdmapval3.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| hdmapval3.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmapval3.te | ⊢ (𝜑 → (𝑁‘{𝑇}) ≠ (𝑁‘{𝐸})) |
| hdmapval3.t | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| hdmapval3N | ⊢ (𝜑 → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . 3 ⊢ (𝑇 = (0g‘𝑈) → (𝑆‘𝑇) = (𝑆‘(0g‘𝑈))) | |
| 2 | oteq3 4848 | . . . 4 ⊢ (𝑇 = (0g‘𝑈) → 〈𝐸, (𝐽‘𝐸), 𝑇〉 = 〈𝐸, (𝐽‘𝐸), (0g‘𝑈)〉) | |
| 3 | 2 | fveq2d 6862 | . . 3 ⊢ (𝑇 = (0g‘𝑈) → (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉) = (𝐼‘〈𝐸, (𝐽‘𝐸), (0g‘𝑈)〉)) |
| 4 | 1, 3 | eqeq12d 2745 | . 2 ⊢ (𝑇 = (0g‘𝑈) → ((𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉) ↔ (𝑆‘(0g‘𝑈)) = (𝐼‘〈𝐸, (𝐽‘𝐸), (0g‘𝑈)〉))) |
| 5 | hdmapval3.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | hdmapval3.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 7 | hdmapval3.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
| 8 | hdmapval3.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 9 | hdmapval3.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 10 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 11 | eqid 2729 | . . . . . . 7 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 12 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 13 | hdmapval3.e | . . . . . . 7 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
| 14 | 5, 10, 11, 6, 7, 12, 13, 9 | dvheveccl 41106 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
| 15 | 14 | eldifad 3926 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
| 16 | hdmapval3.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
| 17 | 5, 6, 7, 8, 9, 15, 16 | dvh3dim 41440 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ 𝑉 ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) |
| 18 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → ∃𝑥 ∈ 𝑉 ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) |
| 19 | hdmapval3.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 20 | hdmapval3.d | . . . . 5 ⊢ 𝐷 = (Base‘𝐶) | |
| 21 | hdmapval3.j | . . . . 5 ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) | |
| 22 | hdmapval3.i | . . . . 5 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
| 23 | hdmapval3.s | . . . . 5 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
| 24 | simp1l 1198 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝜑) | |
| 25 | 24, 9 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 26 | hdmapval3.te | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑇}) ≠ (𝑁‘{𝐸})) | |
| 27 | 24, 26 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑁‘{𝑇}) ≠ (𝑁‘{𝐸})) |
| 28 | 24, 16 | syl 17 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑇 ∈ 𝑉) |
| 29 | simp1r 1199 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑇 ≠ (0g‘𝑈)) | |
| 30 | eldifsn 4750 | . . . . . 6 ⊢ (𝑇 ∈ (𝑉 ∖ {(0g‘𝑈)}) ↔ (𝑇 ∈ 𝑉 ∧ 𝑇 ≠ (0g‘𝑈))) | |
| 31 | 28, 29, 30 | sylanbrc 583 | . . . . 5 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑇 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
| 32 | simp2 1137 | . . . . 5 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑥 ∈ 𝑉) | |
| 33 | simp3 1138 | . . . . 5 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) | |
| 34 | 5, 13, 6, 7, 8, 19, 20, 21, 22, 23, 25, 27, 31, 32, 33 | hdmapval3lemN 41831 | . . . 4 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉)) |
| 35 | 34 | rexlimdv3a 3138 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → (∃𝑥 ∈ 𝑉 ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇}) → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉))) |
| 36 | 18, 35 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉)) |
| 37 | eqid 2729 | . . . 4 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
| 38 | 5, 6, 12, 19, 37, 23, 9 | hdmapval0 41827 | . . 3 ⊢ (𝜑 → (𝑆‘(0g‘𝑈)) = (0g‘𝐶)) |
| 39 | 5, 6, 7, 12, 19, 20, 37, 21, 9, 14 | hvmapcl2 41760 | . . . . 5 ⊢ (𝜑 → (𝐽‘𝐸) ∈ (𝐷 ∖ {(0g‘𝐶)})) |
| 40 | 39 | eldifad 3926 | . . . 4 ⊢ (𝜑 → (𝐽‘𝐸) ∈ 𝐷) |
| 41 | 5, 6, 7, 12, 19, 20, 37, 22, 9, 40, 15 | hdmap1val0 41793 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝐸, (𝐽‘𝐸), (0g‘𝑈)〉) = (0g‘𝐶)) |
| 42 | 38, 41 | eqtr4d 2767 | . 2 ⊢ (𝜑 → (𝑆‘(0g‘𝑈)) = (𝐼‘〈𝐸, (𝐽‘𝐸), (0g‘𝑈)〉)) |
| 43 | 4, 36, 42 | pm2.61ne 3010 | 1 ⊢ (𝜑 → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ∖ cdif 3911 {csn 4589 {cpr 4591 〈cop 4595 〈cotp 4597 I cid 5532 ↾ cres 5640 ‘cfv 6511 Basecbs 17179 0gc0g 17402 LSpanclspn 20877 HLchlt 39343 LHypclh 39978 LTrncltrn 40095 DVecHcdvh 41072 LCDualclcd 41580 HVMapchvm 41750 HDMap1chdma1 41785 HDMapchdma 41786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-riotaBAD 38946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-undef 8252 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-0g 17404 df-mre 17547 df-mrc 17548 df-acs 17550 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cntz 19249 df-oppg 19278 df-lsm 19566 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-nzr 20422 df-rlreg 20603 df-domn 20604 df-drng 20640 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lvec 21010 df-lsatoms 38969 df-lshyp 38970 df-lcv 39012 df-lfl 39051 df-lkr 39079 df-ldual 39117 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-llines 39492 df-lplanes 39493 df-lvols 39494 df-lines 39495 df-psubsp 39497 df-pmap 39498 df-padd 39790 df-lhyp 39982 df-laut 39983 df-ldil 40098 df-ltrn 40099 df-trl 40153 df-tgrp 40737 df-tendo 40749 df-edring 40751 df-dveca 40997 df-disoa 41023 df-dvech 41073 df-dib 41133 df-dic 41167 df-dih 41223 df-doch 41342 df-djh 41389 df-lcdual 41581 df-mapd 41619 df-hvmap 41751 df-hdmap1 41787 df-hdmap 41788 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |