![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapval3N | Structured version Visualization version GIF version |
Description: Value of map from vectors to functionals at arguments not colinear with the reference vector 𝐸. (Contributed by NM, 17-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hdmapval3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmapval3.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 |
hdmapval3.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmapval3.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmapval3.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmapval3.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmapval3.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmapval3.j | ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) |
hdmapval3.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
hdmapval3.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmapval3.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmapval3.te | ⊢ (𝜑 → (𝑁‘{𝑇}) ≠ (𝑁‘{𝐸})) |
hdmapval3.t | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
Ref | Expression |
---|---|
hdmapval3N | ⊢ (𝜑 → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6411 | . . 3 ⊢ (𝑇 = (0g‘𝑈) → (𝑆‘𝑇) = (𝑆‘(0g‘𝑈))) | |
2 | oteq3 4604 | . . . 4 ⊢ (𝑇 = (0g‘𝑈) → 〈𝐸, (𝐽‘𝐸), 𝑇〉 = 〈𝐸, (𝐽‘𝐸), (0g‘𝑈)〉) | |
3 | 2 | fveq2d 6415 | . . 3 ⊢ (𝑇 = (0g‘𝑈) → (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉) = (𝐼‘〈𝐸, (𝐽‘𝐸), (0g‘𝑈)〉)) |
4 | 1, 3 | eqeq12d 2814 | . 2 ⊢ (𝑇 = (0g‘𝑈) → ((𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉) ↔ (𝑆‘(0g‘𝑈)) = (𝐼‘〈𝐸, (𝐽‘𝐸), (0g‘𝑈)〉))) |
5 | hdmapval3.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | hdmapval3.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | hdmapval3.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
8 | hdmapval3.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
9 | hdmapval3.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
10 | eqid 2799 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
11 | eqid 2799 | . . . . . . 7 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
12 | eqid 2799 | . . . . . . 7 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
13 | hdmapval3.e | . . . . . . 7 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
14 | 5, 10, 11, 6, 7, 12, 13, 9 | dvheveccl 37133 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
15 | 14 | eldifad 3781 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
16 | hdmapval3.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
17 | 5, 6, 7, 8, 9, 15, 16 | dvh3dim 37467 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ 𝑉 ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) |
18 | 17 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → ∃𝑥 ∈ 𝑉 ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) |
19 | hdmapval3.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
20 | hdmapval3.d | . . . . 5 ⊢ 𝐷 = (Base‘𝐶) | |
21 | hdmapval3.j | . . . . 5 ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) | |
22 | hdmapval3.i | . . . . 5 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
23 | hdmapval3.s | . . . . 5 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
24 | simp1l 1255 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝜑) | |
25 | 24, 9 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
26 | hdmapval3.te | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑇}) ≠ (𝑁‘{𝐸})) | |
27 | 24, 26 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑁‘{𝑇}) ≠ (𝑁‘{𝐸})) |
28 | 24, 16 | syl 17 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑇 ∈ 𝑉) |
29 | simp1r 1256 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑇 ≠ (0g‘𝑈)) | |
30 | eldifsn 4506 | . . . . . 6 ⊢ (𝑇 ∈ (𝑉 ∖ {(0g‘𝑈)}) ↔ (𝑇 ∈ 𝑉 ∧ 𝑇 ≠ (0g‘𝑈))) | |
31 | 28, 29, 30 | sylanbrc 579 | . . . . 5 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑇 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
32 | simp2 1168 | . . . . 5 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑥 ∈ 𝑉) | |
33 | simp3 1169 | . . . . 5 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) | |
34 | 5, 13, 6, 7, 8, 19, 20, 21, 22, 23, 25, 27, 31, 32, 33 | hdmapval3lemN 37858 | . . . 4 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉)) |
35 | 34 | rexlimdv3a 3214 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → (∃𝑥 ∈ 𝑉 ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇}) → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉))) |
36 | 18, 35 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉)) |
37 | eqid 2799 | . . . 4 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
38 | 5, 6, 12, 19, 37, 23, 9 | hdmapval0 37854 | . . 3 ⊢ (𝜑 → (𝑆‘(0g‘𝑈)) = (0g‘𝐶)) |
39 | 5, 6, 7, 12, 19, 20, 37, 21, 9, 14 | hvmapcl2 37787 | . . . . 5 ⊢ (𝜑 → (𝐽‘𝐸) ∈ (𝐷 ∖ {(0g‘𝐶)})) |
40 | 39 | eldifad 3781 | . . . 4 ⊢ (𝜑 → (𝐽‘𝐸) ∈ 𝐷) |
41 | 5, 6, 7, 12, 19, 20, 37, 22, 9, 40, 15 | hdmap1val0 37820 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝐸, (𝐽‘𝐸), (0g‘𝑈)〉) = (0g‘𝐶)) |
42 | 38, 41 | eqtr4d 2836 | . 2 ⊢ (𝜑 → (𝑆‘(0g‘𝑈)) = (𝐼‘〈𝐸, (𝐽‘𝐸), (0g‘𝑈)〉)) |
43 | 4, 36, 42 | pm2.61ne 3056 | 1 ⊢ (𝜑 → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ∃wrex 3090 ∖ cdif 3766 {csn 4368 {cpr 4370 〈cop 4374 〈cotp 4376 I cid 5219 ↾ cres 5314 ‘cfv 6101 Basecbs 16184 0gc0g 16415 LSpanclspn 19292 HLchlt 35371 LHypclh 36005 LTrncltrn 36122 DVecHcdvh 37099 LCDualclcd 37607 HVMapchvm 37777 HDMap1chdma1 37812 HDMapchdma 37813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-riotaBAD 34974 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-ot 4377 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-om 7300 df-1st 7401 df-2nd 7402 df-tpos 7590 df-undef 7637 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-map 8097 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-n0 11581 df-z 11667 df-uz 11931 df-fz 12581 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-sca 16283 df-vsca 16284 df-0g 16417 df-mre 16561 df-mrc 16562 df-acs 16564 df-proset 17243 df-poset 17261 df-plt 17273 df-lub 17289 df-glb 17290 df-join 17291 df-meet 17292 df-p0 17354 df-p1 17355 df-lat 17361 df-clat 17423 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-submnd 17651 df-grp 17741 df-minusg 17742 df-sbg 17743 df-subg 17904 df-cntz 18062 df-oppg 18088 df-lsm 18364 df-cmn 18510 df-abl 18511 df-mgp 18806 df-ur 18818 df-ring 18865 df-oppr 18939 df-dvdsr 18957 df-unit 18958 df-invr 18988 df-dvr 18999 df-drng 19067 df-lmod 19183 df-lss 19251 df-lsp 19293 df-lvec 19424 df-lsatoms 34997 df-lshyp 34998 df-lcv 35040 df-lfl 35079 df-lkr 35107 df-ldual 35145 df-oposet 35197 df-ol 35199 df-oml 35200 df-covers 35287 df-ats 35288 df-atl 35319 df-cvlat 35343 df-hlat 35372 df-llines 35519 df-lplanes 35520 df-lvols 35521 df-lines 35522 df-psubsp 35524 df-pmap 35525 df-padd 35817 df-lhyp 36009 df-laut 36010 df-ldil 36125 df-ltrn 36126 df-trl 36180 df-tgrp 36764 df-tendo 36776 df-edring 36778 df-dveca 37024 df-disoa 37050 df-dvech 37100 df-dib 37160 df-dic 37194 df-dih 37250 df-doch 37369 df-djh 37416 df-lcdual 37608 df-mapd 37646 df-hvmap 37778 df-hdmap1 37814 df-hdmap 37815 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |