Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapval3N | Structured version Visualization version GIF version |
Description: Value of map from vectors to functionals at arguments not colinear with the reference vector 𝐸. (Contributed by NM, 17-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hdmapval3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmapval3.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 |
hdmapval3.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmapval3.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmapval3.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmapval3.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmapval3.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmapval3.j | ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) |
hdmapval3.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
hdmapval3.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmapval3.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmapval3.te | ⊢ (𝜑 → (𝑁‘{𝑇}) ≠ (𝑁‘{𝐸})) |
hdmapval3.t | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
Ref | Expression |
---|---|
hdmapval3N | ⊢ (𝜑 → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . 3 ⊢ (𝑇 = (0g‘𝑈) → (𝑆‘𝑇) = (𝑆‘(0g‘𝑈))) | |
2 | oteq3 4815 | . . . 4 ⊢ (𝑇 = (0g‘𝑈) → 〈𝐸, (𝐽‘𝐸), 𝑇〉 = 〈𝐸, (𝐽‘𝐸), (0g‘𝑈)〉) | |
3 | 2 | fveq2d 6778 | . . 3 ⊢ (𝑇 = (0g‘𝑈) → (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉) = (𝐼‘〈𝐸, (𝐽‘𝐸), (0g‘𝑈)〉)) |
4 | 1, 3 | eqeq12d 2754 | . 2 ⊢ (𝑇 = (0g‘𝑈) → ((𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉) ↔ (𝑆‘(0g‘𝑈)) = (𝐼‘〈𝐸, (𝐽‘𝐸), (0g‘𝑈)〉))) |
5 | hdmapval3.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | hdmapval3.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | hdmapval3.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
8 | hdmapval3.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
9 | hdmapval3.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
10 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
11 | eqid 2738 | . . . . . . 7 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
12 | eqid 2738 | . . . . . . 7 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
13 | hdmapval3.e | . . . . . . 7 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
14 | 5, 10, 11, 6, 7, 12, 13, 9 | dvheveccl 39126 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
15 | 14 | eldifad 3899 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
16 | hdmapval3.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
17 | 5, 6, 7, 8, 9, 15, 16 | dvh3dim 39460 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ 𝑉 ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) |
18 | 17 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → ∃𝑥 ∈ 𝑉 ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) |
19 | hdmapval3.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
20 | hdmapval3.d | . . . . 5 ⊢ 𝐷 = (Base‘𝐶) | |
21 | hdmapval3.j | . . . . 5 ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) | |
22 | hdmapval3.i | . . . . 5 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
23 | hdmapval3.s | . . . . 5 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
24 | simp1l 1196 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝜑) | |
25 | 24, 9 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
26 | hdmapval3.te | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑇}) ≠ (𝑁‘{𝐸})) | |
27 | 24, 26 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑁‘{𝑇}) ≠ (𝑁‘{𝐸})) |
28 | 24, 16 | syl 17 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑇 ∈ 𝑉) |
29 | simp1r 1197 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑇 ≠ (0g‘𝑈)) | |
30 | eldifsn 4720 | . . . . . 6 ⊢ (𝑇 ∈ (𝑉 ∖ {(0g‘𝑈)}) ↔ (𝑇 ∈ 𝑉 ∧ 𝑇 ≠ (0g‘𝑈))) | |
31 | 28, 29, 30 | sylanbrc 583 | . . . . 5 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑇 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
32 | simp2 1136 | . . . . 5 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑥 ∈ 𝑉) | |
33 | simp3 1137 | . . . . 5 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) | |
34 | 5, 13, 6, 7, 8, 19, 20, 21, 22, 23, 25, 27, 31, 32, 33 | hdmapval3lemN 39851 | . . . 4 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉)) |
35 | 34 | rexlimdv3a 3215 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → (∃𝑥 ∈ 𝑉 ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇}) → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉))) |
36 | 18, 35 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉)) |
37 | eqid 2738 | . . . 4 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
38 | 5, 6, 12, 19, 37, 23, 9 | hdmapval0 39847 | . . 3 ⊢ (𝜑 → (𝑆‘(0g‘𝑈)) = (0g‘𝐶)) |
39 | 5, 6, 7, 12, 19, 20, 37, 21, 9, 14 | hvmapcl2 39780 | . . . . 5 ⊢ (𝜑 → (𝐽‘𝐸) ∈ (𝐷 ∖ {(0g‘𝐶)})) |
40 | 39 | eldifad 3899 | . . . 4 ⊢ (𝜑 → (𝐽‘𝐸) ∈ 𝐷) |
41 | 5, 6, 7, 12, 19, 20, 37, 22, 9, 40, 15 | hdmap1val0 39813 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝐸, (𝐽‘𝐸), (0g‘𝑈)〉) = (0g‘𝐶)) |
42 | 38, 41 | eqtr4d 2781 | . 2 ⊢ (𝜑 → (𝑆‘(0g‘𝑈)) = (𝐼‘〈𝐸, (𝐽‘𝐸), (0g‘𝑈)〉)) |
43 | 4, 36, 42 | pm2.61ne 3030 | 1 ⊢ (𝜑 → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 ∖ cdif 3884 {csn 4561 {cpr 4563 〈cop 4567 〈cotp 4569 I cid 5488 ↾ cres 5591 ‘cfv 6433 Basecbs 16912 0gc0g 17150 LSpanclspn 20233 HLchlt 37364 LHypclh 37998 LTrncltrn 38115 DVecHcdvh 39092 LCDualclcd 39600 HVMapchvm 39770 HDMap1chdma1 39805 HDMapchdma 39806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-riotaBAD 36967 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-ot 4570 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-undef 8089 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-0g 17152 df-mre 17295 df-mrc 17296 df-acs 17298 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-cntz 18923 df-oppg 18950 df-lsm 19241 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-drng 19993 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lvec 20365 df-lsatoms 36990 df-lshyp 36991 df-lcv 37033 df-lfl 37072 df-lkr 37100 df-ldual 37138 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 df-lplanes 37513 df-lvols 37514 df-lines 37515 df-psubsp 37517 df-pmap 37518 df-padd 37810 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 df-trl 38173 df-tgrp 38757 df-tendo 38769 df-edring 38771 df-dveca 39017 df-disoa 39043 df-dvech 39093 df-dib 39153 df-dic 39187 df-dih 39243 df-doch 39362 df-djh 39409 df-lcdual 39601 df-mapd 39639 df-hvmap 39771 df-hdmap1 39807 df-hdmap 39808 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |