![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapval3N | Structured version Visualization version GIF version |
Description: Value of map from vectors to functionals at arguments not colinear with the reference vector πΈ. (Contributed by NM, 17-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hdmapval3.h | β’ π» = (LHypβπΎ) |
hdmapval3.e | β’ πΈ = β¨( I βΎ (BaseβπΎ)), ( I βΎ ((LTrnβπΎ)βπ))β© |
hdmapval3.u | β’ π = ((DVecHβπΎ)βπ) |
hdmapval3.v | β’ π = (Baseβπ) |
hdmapval3.n | β’ π = (LSpanβπ) |
hdmapval3.c | β’ πΆ = ((LCDualβπΎ)βπ) |
hdmapval3.d | β’ π· = (BaseβπΆ) |
hdmapval3.j | β’ π½ = ((HVMapβπΎ)βπ) |
hdmapval3.i | β’ πΌ = ((HDMap1βπΎ)βπ) |
hdmapval3.s | β’ π = ((HDMapβπΎ)βπ) |
hdmapval3.k | β’ (π β (πΎ β HL β§ π β π»)) |
hdmapval3.te | β’ (π β (πβ{π}) β (πβ{πΈ})) |
hdmapval3.t | β’ (π β π β π) |
Ref | Expression |
---|---|
hdmapval3N | β’ (π β (πβπ) = (πΌββ¨πΈ, (π½βπΈ), πβ©)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6888 | . . 3 β’ (π = (0gβπ) β (πβπ) = (πβ(0gβπ))) | |
2 | oteq3 4883 | . . . 4 β’ (π = (0gβπ) β β¨πΈ, (π½βπΈ), πβ© = β¨πΈ, (π½βπΈ), (0gβπ)β©) | |
3 | 2 | fveq2d 6892 | . . 3 β’ (π = (0gβπ) β (πΌββ¨πΈ, (π½βπΈ), πβ©) = (πΌββ¨πΈ, (π½βπΈ), (0gβπ)β©)) |
4 | 1, 3 | eqeq12d 2748 | . 2 β’ (π = (0gβπ) β ((πβπ) = (πΌββ¨πΈ, (π½βπΈ), πβ©) β (πβ(0gβπ)) = (πΌββ¨πΈ, (π½βπΈ), (0gβπ)β©))) |
5 | hdmapval3.h | . . . . 5 β’ π» = (LHypβπΎ) | |
6 | hdmapval3.u | . . . . 5 β’ π = ((DVecHβπΎ)βπ) | |
7 | hdmapval3.v | . . . . 5 β’ π = (Baseβπ) | |
8 | hdmapval3.n | . . . . 5 β’ π = (LSpanβπ) | |
9 | hdmapval3.k | . . . . 5 β’ (π β (πΎ β HL β§ π β π»)) | |
10 | eqid 2732 | . . . . . . 7 β’ (BaseβπΎ) = (BaseβπΎ) | |
11 | eqid 2732 | . . . . . . 7 β’ ((LTrnβπΎ)βπ) = ((LTrnβπΎ)βπ) | |
12 | eqid 2732 | . . . . . . 7 β’ (0gβπ) = (0gβπ) | |
13 | hdmapval3.e | . . . . . . 7 β’ πΈ = β¨( I βΎ (BaseβπΎ)), ( I βΎ ((LTrnβπΎ)βπ))β© | |
14 | 5, 10, 11, 6, 7, 12, 13, 9 | dvheveccl 39971 | . . . . . 6 β’ (π β πΈ β (π β {(0gβπ)})) |
15 | 14 | eldifad 3959 | . . . . 5 β’ (π β πΈ β π) |
16 | hdmapval3.t | . . . . 5 β’ (π β π β π) | |
17 | 5, 6, 7, 8, 9, 15, 16 | dvh3dim 40305 | . . . 4 β’ (π β βπ₯ β π Β¬ π₯ β (πβ{πΈ, π})) |
18 | 17 | adantr 481 | . . 3 β’ ((π β§ π β (0gβπ)) β βπ₯ β π Β¬ π₯ β (πβ{πΈ, π})) |
19 | hdmapval3.c | . . . . 5 β’ πΆ = ((LCDualβπΎ)βπ) | |
20 | hdmapval3.d | . . . . 5 β’ π· = (BaseβπΆ) | |
21 | hdmapval3.j | . . . . 5 β’ π½ = ((HVMapβπΎ)βπ) | |
22 | hdmapval3.i | . . . . 5 β’ πΌ = ((HDMap1βπΎ)βπ) | |
23 | hdmapval3.s | . . . . 5 β’ π = ((HDMapβπΎ)βπ) | |
24 | simp1l 1197 | . . . . . 6 β’ (((π β§ π β (0gβπ)) β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β π) | |
25 | 24, 9 | syl 17 | . . . . 5 β’ (((π β§ π β (0gβπ)) β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β (πΎ β HL β§ π β π»)) |
26 | hdmapval3.te | . . . . . 6 β’ (π β (πβ{π}) β (πβ{πΈ})) | |
27 | 24, 26 | syl 17 | . . . . 5 β’ (((π β§ π β (0gβπ)) β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β (πβ{π}) β (πβ{πΈ})) |
28 | 24, 16 | syl 17 | . . . . . 6 β’ (((π β§ π β (0gβπ)) β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β π β π) |
29 | simp1r 1198 | . . . . . 6 β’ (((π β§ π β (0gβπ)) β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β π β (0gβπ)) | |
30 | eldifsn 4789 | . . . . . 6 β’ (π β (π β {(0gβπ)}) β (π β π β§ π β (0gβπ))) | |
31 | 28, 29, 30 | sylanbrc 583 | . . . . 5 β’ (((π β§ π β (0gβπ)) β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β π β (π β {(0gβπ)})) |
32 | simp2 1137 | . . . . 5 β’ (((π β§ π β (0gβπ)) β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β π₯ β π) | |
33 | simp3 1138 | . . . . 5 β’ (((π β§ π β (0gβπ)) β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β Β¬ π₯ β (πβ{πΈ, π})) | |
34 | 5, 13, 6, 7, 8, 19, 20, 21, 22, 23, 25, 27, 31, 32, 33 | hdmapval3lemN 40696 | . . . 4 β’ (((π β§ π β (0gβπ)) β§ π₯ β π β§ Β¬ π₯ β (πβ{πΈ, π})) β (πβπ) = (πΌββ¨πΈ, (π½βπΈ), πβ©)) |
35 | 34 | rexlimdv3a 3159 | . . 3 β’ ((π β§ π β (0gβπ)) β (βπ₯ β π Β¬ π₯ β (πβ{πΈ, π}) β (πβπ) = (πΌββ¨πΈ, (π½βπΈ), πβ©))) |
36 | 18, 35 | mpd 15 | . 2 β’ ((π β§ π β (0gβπ)) β (πβπ) = (πΌββ¨πΈ, (π½βπΈ), πβ©)) |
37 | eqid 2732 | . . . 4 β’ (0gβπΆ) = (0gβπΆ) | |
38 | 5, 6, 12, 19, 37, 23, 9 | hdmapval0 40692 | . . 3 β’ (π β (πβ(0gβπ)) = (0gβπΆ)) |
39 | 5, 6, 7, 12, 19, 20, 37, 21, 9, 14 | hvmapcl2 40625 | . . . . 5 β’ (π β (π½βπΈ) β (π· β {(0gβπΆ)})) |
40 | 39 | eldifad 3959 | . . . 4 β’ (π β (π½βπΈ) β π·) |
41 | 5, 6, 7, 12, 19, 20, 37, 22, 9, 40, 15 | hdmap1val0 40658 | . . 3 β’ (π β (πΌββ¨πΈ, (π½βπΈ), (0gβπ)β©) = (0gβπΆ)) |
42 | 38, 41 | eqtr4d 2775 | . 2 β’ (π β (πβ(0gβπ)) = (πΌββ¨πΈ, (π½βπΈ), (0gβπ)β©)) |
43 | 4, 36, 42 | pm2.61ne 3027 | 1 β’ (π β (πβπ) = (πΌββ¨πΈ, (π½βπΈ), πβ©)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 βwrex 3070 β cdif 3944 {csn 4627 {cpr 4629 β¨cop 4633 β¨cotp 4635 I cid 5572 βΎ cres 5677 βcfv 6540 Basecbs 17140 0gc0g 17381 LSpanclspn 20574 HLchlt 38208 LHypclh 38843 LTrncltrn 38960 DVecHcdvh 39937 LCDualclcd 40445 HVMapchvm 40615 HDMap1chdma1 40650 HDMapchdma 40651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-riotaBAD 37811 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-ot 4636 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8207 df-undef 8254 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-0g 17383 df-mre 17526 df-mrc 17527 df-acs 17529 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-p1 18375 df-lat 18381 df-clat 18448 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-subg 18997 df-cntz 19175 df-oppg 19204 df-lsm 19498 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-oppr 20142 df-dvdsr 20163 df-unit 20164 df-invr 20194 df-dvr 20207 df-drng 20309 df-lmod 20465 df-lss 20535 df-lsp 20575 df-lvec 20706 df-lsatoms 37834 df-lshyp 37835 df-lcv 37877 df-lfl 37916 df-lkr 37944 df-ldual 37982 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-llines 38357 df-lplanes 38358 df-lvols 38359 df-lines 38360 df-psubsp 38362 df-pmap 38363 df-padd 38655 df-lhyp 38847 df-laut 38848 df-ldil 38963 df-ltrn 38964 df-trl 39018 df-tgrp 39602 df-tendo 39614 df-edring 39616 df-dveca 39862 df-disoa 39888 df-dvech 39938 df-dib 39998 df-dic 40032 df-dih 40088 df-doch 40207 df-djh 40254 df-lcdual 40446 df-mapd 40484 df-hvmap 40616 df-hdmap1 40652 df-hdmap 40653 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |