| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapval3N | Structured version Visualization version GIF version | ||
| Description: Value of map from vectors to functionals at arguments not colinear with the reference vector 𝐸. (Contributed by NM, 17-May-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hdmapval3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmapval3.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 |
| hdmapval3.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmapval3.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmapval3.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmapval3.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmapval3.d | ⊢ 𝐷 = (Base‘𝐶) |
| hdmapval3.j | ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) |
| hdmapval3.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
| hdmapval3.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| hdmapval3.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmapval3.te | ⊢ (𝜑 → (𝑁‘{𝑇}) ≠ (𝑁‘{𝐸})) |
| hdmapval3.t | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| hdmapval3N | ⊢ (𝜑 → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6872 | . . 3 ⊢ (𝑇 = (0g‘𝑈) → (𝑆‘𝑇) = (𝑆‘(0g‘𝑈))) | |
| 2 | oteq3 4857 | . . . 4 ⊢ (𝑇 = (0g‘𝑈) → 〈𝐸, (𝐽‘𝐸), 𝑇〉 = 〈𝐸, (𝐽‘𝐸), (0g‘𝑈)〉) | |
| 3 | 2 | fveq2d 6876 | . . 3 ⊢ (𝑇 = (0g‘𝑈) → (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉) = (𝐼‘〈𝐸, (𝐽‘𝐸), (0g‘𝑈)〉)) |
| 4 | 1, 3 | eqeq12d 2750 | . 2 ⊢ (𝑇 = (0g‘𝑈) → ((𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉) ↔ (𝑆‘(0g‘𝑈)) = (𝐼‘〈𝐸, (𝐽‘𝐸), (0g‘𝑈)〉))) |
| 5 | hdmapval3.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | hdmapval3.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 7 | hdmapval3.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
| 8 | hdmapval3.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 9 | hdmapval3.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 10 | eqid 2734 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 11 | eqid 2734 | . . . . . . 7 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 12 | eqid 2734 | . . . . . . 7 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 13 | hdmapval3.e | . . . . . . 7 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
| 14 | 5, 10, 11, 6, 7, 12, 13, 9 | dvheveccl 41052 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
| 15 | 14 | eldifad 3936 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
| 16 | hdmapval3.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
| 17 | 5, 6, 7, 8, 9, 15, 16 | dvh3dim 41386 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ 𝑉 ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) |
| 18 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → ∃𝑥 ∈ 𝑉 ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) |
| 19 | hdmapval3.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 20 | hdmapval3.d | . . . . 5 ⊢ 𝐷 = (Base‘𝐶) | |
| 21 | hdmapval3.j | . . . . 5 ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) | |
| 22 | hdmapval3.i | . . . . 5 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
| 23 | hdmapval3.s | . . . . 5 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
| 24 | simp1l 1197 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝜑) | |
| 25 | 24, 9 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 26 | hdmapval3.te | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑇}) ≠ (𝑁‘{𝐸})) | |
| 27 | 24, 26 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑁‘{𝑇}) ≠ (𝑁‘{𝐸})) |
| 28 | 24, 16 | syl 17 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑇 ∈ 𝑉) |
| 29 | simp1r 1198 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑇 ≠ (0g‘𝑈)) | |
| 30 | eldifsn 4759 | . . . . . 6 ⊢ (𝑇 ∈ (𝑉 ∖ {(0g‘𝑈)}) ↔ (𝑇 ∈ 𝑉 ∧ 𝑇 ≠ (0g‘𝑈))) | |
| 31 | 28, 29, 30 | sylanbrc 583 | . . . . 5 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑇 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
| 32 | simp2 1137 | . . . . 5 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → 𝑥 ∈ 𝑉) | |
| 33 | simp3 1138 | . . . . 5 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) | |
| 34 | 5, 13, 6, 7, 8, 19, 20, 21, 22, 23, 25, 27, 31, 32, 33 | hdmapval3lemN 41777 | . . . 4 ⊢ (((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉)) |
| 35 | 34 | rexlimdv3a 3143 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → (∃𝑥 ∈ 𝑉 ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇}) → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉))) |
| 36 | 18, 35 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉)) |
| 37 | eqid 2734 | . . . 4 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
| 38 | 5, 6, 12, 19, 37, 23, 9 | hdmapval0 41773 | . . 3 ⊢ (𝜑 → (𝑆‘(0g‘𝑈)) = (0g‘𝐶)) |
| 39 | 5, 6, 7, 12, 19, 20, 37, 21, 9, 14 | hvmapcl2 41706 | . . . . 5 ⊢ (𝜑 → (𝐽‘𝐸) ∈ (𝐷 ∖ {(0g‘𝐶)})) |
| 40 | 39 | eldifad 3936 | . . . 4 ⊢ (𝜑 → (𝐽‘𝐸) ∈ 𝐷) |
| 41 | 5, 6, 7, 12, 19, 20, 37, 22, 9, 40, 15 | hdmap1val0 41739 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝐸, (𝐽‘𝐸), (0g‘𝑈)〉) = (0g‘𝐶)) |
| 42 | 38, 41 | eqtr4d 2772 | . 2 ⊢ (𝜑 → (𝑆‘(0g‘𝑈)) = (𝐼‘〈𝐸, (𝐽‘𝐸), (0g‘𝑈)〉)) |
| 43 | 4, 36, 42 | pm2.61ne 3016 | 1 ⊢ (𝜑 → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 ∖ cdif 3921 {csn 4599 {cpr 4601 〈cop 4605 〈cotp 4607 I cid 5544 ↾ cres 5653 ‘cfv 6527 Basecbs 17213 0gc0g 17438 LSpanclspn 20913 HLchlt 39289 LHypclh 39924 LTrncltrn 40041 DVecHcdvh 41018 LCDualclcd 41526 HVMapchvm 41696 HDMap1chdma1 41731 HDMapchdma 41732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-riotaBAD 38892 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-ot 4608 df-uni 4881 df-int 4920 df-iun 4966 df-iin 4967 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-of 7665 df-om 7856 df-1st 7982 df-2nd 7983 df-tpos 8219 df-undef 8266 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-er 8713 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-n0 12494 df-z 12581 df-uz 12845 df-fz 13514 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-mulr 17270 df-sca 17272 df-vsca 17273 df-0g 17440 df-mre 17583 df-mrc 17584 df-acs 17586 df-proset 18291 df-poset 18310 df-plt 18325 df-lub 18341 df-glb 18342 df-join 18343 df-meet 18344 df-p0 18420 df-p1 18421 df-lat 18427 df-clat 18494 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18747 df-grp 18904 df-minusg 18905 df-sbg 18906 df-subg 19091 df-cntz 19285 df-oppg 19314 df-lsm 19602 df-cmn 19748 df-abl 19749 df-mgp 20086 df-rng 20098 df-ur 20127 df-ring 20180 df-oppr 20282 df-dvdsr 20302 df-unit 20303 df-invr 20333 df-dvr 20346 df-nzr 20458 df-rlreg 20639 df-domn 20640 df-drng 20676 df-lmod 20804 df-lss 20874 df-lsp 20914 df-lvec 21046 df-lsatoms 38915 df-lshyp 38916 df-lcv 38958 df-lfl 38997 df-lkr 39025 df-ldual 39063 df-oposet 39115 df-ol 39117 df-oml 39118 df-covers 39205 df-ats 39206 df-atl 39237 df-cvlat 39261 df-hlat 39290 df-llines 39438 df-lplanes 39439 df-lvols 39440 df-lines 39441 df-psubsp 39443 df-pmap 39444 df-padd 39736 df-lhyp 39928 df-laut 39929 df-ldil 40044 df-ltrn 40045 df-trl 40099 df-tgrp 40683 df-tendo 40695 df-edring 40697 df-dveca 40943 df-disoa 40969 df-dvech 41019 df-dib 41079 df-dic 41113 df-dih 41169 df-doch 41288 df-djh 41335 df-lcdual 41527 df-mapd 41565 df-hvmap 41697 df-hdmap1 41733 df-hdmap 41734 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |