MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgi0 Structured version   Visualization version   GIF version

Theorem efgi0 19762
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
Assertion
Ref Expression
efgi0 ((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽𝐼) → 𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, ∅⟩⟨𝐽, 1o⟩”⟩⟩))

Proof of Theorem efgi0
StepHypRef Expression
1 0ex 5325 . . . . . 6 ∅ ∈ V
21prid1 4787 . . . . 5 ∅ ∈ {∅, 1o}
3 df2o3 8530 . . . . 5 2o = {∅, 1o}
42, 3eleqtrri 2843 . . . 4 ∅ ∈ 2o
5 efgval.w . . . . 5 𝑊 = ( I ‘Word (𝐼 × 2o))
6 efgval.r . . . . 5 = ( ~FG𝐼)
75, 6efgi 19761 . . . 4 (((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽𝐼 ∧ ∅ ∈ 2o)) → 𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, ∅⟩⟨𝐽, (1o ∖ ∅)⟩”⟩⟩))
84, 7mpanr2 703 . . 3 (((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴))) ∧ 𝐽𝐼) → 𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, ∅⟩⟨𝐽, (1o ∖ ∅)⟩”⟩⟩))
983impa 1110 . 2 ((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽𝐼) → 𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, ∅⟩⟨𝐽, (1o ∖ ∅)⟩”⟩⟩))
10 tru 1541 . . . 4
11 eqidd 2741 . . . . 5 (⊤ → ⟨𝐽, ∅⟩ = ⟨𝐽, ∅⟩)
12 dif0 4400 . . . . . . 7 (1o ∖ ∅) = 1o
1312opeq2i 4901 . . . . . 6 𝐽, (1o ∖ ∅)⟩ = ⟨𝐽, 1o
1413a1i 11 . . . . 5 (⊤ → ⟨𝐽, (1o ∖ ∅)⟩ = ⟨𝐽, 1o⟩)
1511, 14s2eqd 14912 . . . 4 (⊤ → ⟨“⟨𝐽, ∅⟩⟨𝐽, (1o ∖ ∅)⟩”⟩ = ⟨“⟨𝐽, ∅⟩⟨𝐽, 1o⟩”⟩)
16 oteq3 4908 . . . 4 (⟨“⟨𝐽, ∅⟩⟨𝐽, (1o ∖ ∅)⟩”⟩ = ⟨“⟨𝐽, ∅⟩⟨𝐽, 1o⟩”⟩ → ⟨𝑁, 𝑁, ⟨“⟨𝐽, ∅⟩⟨𝐽, (1o ∖ ∅)⟩”⟩⟩ = ⟨𝑁, 𝑁, ⟨“⟨𝐽, ∅⟩⟨𝐽, 1o⟩”⟩⟩)
1710, 15, 16mp2b 10 . . 3 𝑁, 𝑁, ⟨“⟨𝐽, ∅⟩⟨𝐽, (1o ∖ ∅)⟩”⟩⟩ = ⟨𝑁, 𝑁, ⟨“⟨𝐽, ∅⟩⟨𝐽, 1o⟩”⟩⟩
1817oveq2i 7459 . 2 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, ∅⟩⟨𝐽, (1o ∖ ∅)⟩”⟩⟩) = (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, ∅⟩⟨𝐽, 1o⟩”⟩⟩)
199, 18breqtrdi 5207 1 ((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽𝐼) → 𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, ∅⟩⟨𝐽, 1o⟩”⟩⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wtru 1538  wcel 2108  cdif 3973  c0 4352  {cpr 4650  cop 4654  cotp 4656   class class class wbr 5166   I cid 5592   × cxp 5698  cfv 6573  (class class class)co 7448  1oc1o 8515  2oc2o 8516  0cc0 11184  ...cfz 13567  chash 14379  Word cword 14562   splice csplice 14797  ⟨“cs2 14890   ~FG cefg 19748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-s2 14897  df-efg 19751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator