Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efgi0 | Structured version Visualization version GIF version |
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
Ref | Expression |
---|---|
efgi0 | ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, 1o〉”〉〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5226 | . . . . . 6 ⊢ ∅ ∈ V | |
2 | 1 | prid1 4695 | . . . . 5 ⊢ ∅ ∈ {∅, 1o} |
3 | df2o3 8282 | . . . . 5 ⊢ 2o = {∅, 1o} | |
4 | 2, 3 | eleqtrri 2838 | . . . 4 ⊢ ∅ ∈ 2o |
5 | efgval.w | . . . . 5 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
6 | efgval.r | . . . . 5 ⊢ ∼ = ( ~FG ‘𝐼) | |
7 | 5, 6 | efgi 19240 | . . . 4 ⊢ (((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽 ∈ 𝐼 ∧ ∅ ∈ 2o)) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, (1o ∖ ∅)〉”〉〉)) |
8 | 4, 7 | mpanr2 700 | . . 3 ⊢ (((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴))) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, (1o ∖ ∅)〉”〉〉)) |
9 | 8 | 3impa 1108 | . 2 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, (1o ∖ ∅)〉”〉〉)) |
10 | tru 1543 | . . . 4 ⊢ ⊤ | |
11 | eqidd 2739 | . . . . 5 ⊢ (⊤ → 〈𝐽, ∅〉 = 〈𝐽, ∅〉) | |
12 | dif0 4303 | . . . . . . 7 ⊢ (1o ∖ ∅) = 1o | |
13 | 12 | opeq2i 4805 | . . . . . 6 ⊢ 〈𝐽, (1o ∖ ∅)〉 = 〈𝐽, 1o〉 |
14 | 13 | a1i 11 | . . . . 5 ⊢ (⊤ → 〈𝐽, (1o ∖ ∅)〉 = 〈𝐽, 1o〉) |
15 | 11, 14 | s2eqd 14504 | . . . 4 ⊢ (⊤ → 〈“〈𝐽, ∅〉〈𝐽, (1o ∖ ∅)〉”〉 = 〈“〈𝐽, ∅〉〈𝐽, 1o〉”〉) |
16 | oteq3 4812 | . . . 4 ⊢ (〈“〈𝐽, ∅〉〈𝐽, (1o ∖ ∅)〉”〉 = 〈“〈𝐽, ∅〉〈𝐽, 1o〉”〉 → 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, (1o ∖ ∅)〉”〉〉 = 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, 1o〉”〉〉) | |
17 | 10, 15, 16 | mp2b 10 | . . 3 ⊢ 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, (1o ∖ ∅)〉”〉〉 = 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, 1o〉”〉〉 |
18 | 17 | oveq2i 7266 | . 2 ⊢ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, (1o ∖ ∅)〉”〉〉) = (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, 1o〉”〉〉) |
19 | 9, 18 | breqtrdi 5111 | 1 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, 1o〉”〉〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 ∖ cdif 3880 ∅c0 4253 {cpr 4560 〈cop 4564 〈cotp 4566 class class class wbr 5070 I cid 5479 × cxp 5578 ‘cfv 6418 (class class class)co 7255 1oc1o 8260 2oc2o 8261 0cc0 10802 ...cfz 13168 ♯chash 13972 Word cword 14145 splice csplice 14390 〈“cs2 14482 ~FG cefg 19227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-substr 14282 df-pfx 14312 df-splice 14391 df-s2 14489 df-efg 19230 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |