| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgi0 | Structured version Visualization version GIF version | ||
| Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| Ref | Expression |
|---|---|
| efgi0 | ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, 1o〉”〉〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5247 | . . . . . 6 ⊢ ∅ ∈ V | |
| 2 | 1 | prid1 4714 | . . . . 5 ⊢ ∅ ∈ {∅, 1o} |
| 3 | df2o3 8399 | . . . . 5 ⊢ 2o = {∅, 1o} | |
| 4 | 2, 3 | eleqtrri 2832 | . . . 4 ⊢ ∅ ∈ 2o |
| 5 | efgval.w | . . . . 5 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 6 | efgval.r | . . . . 5 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 7 | 5, 6 | efgi 19633 | . . . 4 ⊢ (((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽 ∈ 𝐼 ∧ ∅ ∈ 2o)) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, (1o ∖ ∅)〉”〉〉)) |
| 8 | 4, 7 | mpanr2 704 | . . 3 ⊢ (((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴))) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, (1o ∖ ∅)〉”〉〉)) |
| 9 | 8 | 3impa 1109 | . 2 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, (1o ∖ ∅)〉”〉〉)) |
| 10 | tru 1545 | . . . 4 ⊢ ⊤ | |
| 11 | eqidd 2734 | . . . . 5 ⊢ (⊤ → 〈𝐽, ∅〉 = 〈𝐽, ∅〉) | |
| 12 | dif0 4327 | . . . . . . 7 ⊢ (1o ∖ ∅) = 1o | |
| 13 | 12 | opeq2i 4828 | . . . . . 6 ⊢ 〈𝐽, (1o ∖ ∅)〉 = 〈𝐽, 1o〉 |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (⊤ → 〈𝐽, (1o ∖ ∅)〉 = 〈𝐽, 1o〉) |
| 15 | 11, 14 | s2eqd 14772 | . . . 4 ⊢ (⊤ → 〈“〈𝐽, ∅〉〈𝐽, (1o ∖ ∅)〉”〉 = 〈“〈𝐽, ∅〉〈𝐽, 1o〉”〉) |
| 16 | oteq3 4835 | . . . 4 ⊢ (〈“〈𝐽, ∅〉〈𝐽, (1o ∖ ∅)〉”〉 = 〈“〈𝐽, ∅〉〈𝐽, 1o〉”〉 → 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, (1o ∖ ∅)〉”〉〉 = 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, 1o〉”〉〉) | |
| 17 | 10, 15, 16 | mp2b 10 | . . 3 ⊢ 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, (1o ∖ ∅)〉”〉〉 = 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, 1o〉”〉〉 |
| 18 | 17 | oveq2i 7363 | . 2 ⊢ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, (1o ∖ ∅)〉”〉〉) = (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, 1o〉”〉〉) |
| 19 | 9, 18 | breqtrdi 5134 | 1 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, 1o〉”〉〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ⊤wtru 1542 ∈ wcel 2113 ∖ cdif 3895 ∅c0 4282 {cpr 4577 〈cop 4581 〈cotp 4583 class class class wbr 5093 I cid 5513 × cxp 5617 ‘cfv 6486 (class class class)co 7352 1oc1o 8384 2oc2o 8385 0cc0 11013 ...cfz 13409 ♯chash 14239 Word cword 14422 splice csplice 14658 〈“cs2 14750 ~FG cefg 19620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-ot 4584 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-concat 14480 df-s1 14506 df-substr 14551 df-pfx 14581 df-splice 14659 df-s2 14757 df-efg 19623 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |