Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efgi1 | Structured version Visualization version GIF version |
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
Ref | Expression |
---|---|
efgi1 | ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 8120 | . . . . . 6 ⊢ 1o ∈ V | |
2 | 1 | prid2 4656 | . . . . 5 ⊢ 1o ∈ {∅, 1o} |
3 | df2o3 8127 | . . . . 5 ⊢ 2o = {∅, 1o} | |
4 | 2, 3 | eleqtrri 2851 | . . . 4 ⊢ 1o ∈ 2o |
5 | efgval.w | . . . . 5 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
6 | efgval.r | . . . . 5 ⊢ ∼ = ( ~FG ‘𝐼) | |
7 | 5, 6 | efgi 18912 | . . . 4 ⊢ (((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽 ∈ 𝐼 ∧ 1o ∈ 2o)) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉〉)) |
8 | 4, 7 | mpanr2 703 | . . 3 ⊢ (((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴))) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉〉)) |
9 | 8 | 3impa 1107 | . 2 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉〉)) |
10 | tru 1542 | . . . 4 ⊢ ⊤ | |
11 | eqidd 2759 | . . . . 5 ⊢ (⊤ → 〈𝐽, 1o〉 = 〈𝐽, 1o〉) | |
12 | difid 4269 | . . . . . . 7 ⊢ (1o ∖ 1o) = ∅ | |
13 | 12 | opeq2i 4767 | . . . . . 6 ⊢ 〈𝐽, (1o ∖ 1o)〉 = 〈𝐽, ∅〉 |
14 | 13 | a1i 11 | . . . . 5 ⊢ (⊤ → 〈𝐽, (1o ∖ 1o)〉 = 〈𝐽, ∅〉) |
15 | 11, 14 | s2eqd 14272 | . . . 4 ⊢ (⊤ → 〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉 = 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉) |
16 | oteq3 4774 | . . . 4 ⊢ (〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉 = 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉 → 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉〉 = 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉〉) | |
17 | 10, 15, 16 | mp2b 10 | . . 3 ⊢ 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉〉 = 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉〉 |
18 | 17 | oveq2i 7161 | . 2 ⊢ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉〉) = (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉〉) |
19 | 9, 18 | breqtrdi 5073 | 1 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ⊤wtru 1539 ∈ wcel 2111 ∖ cdif 3855 ∅c0 4225 {cpr 4524 〈cop 4528 〈cotp 4530 class class class wbr 5032 I cid 5429 × cxp 5522 ‘cfv 6335 (class class class)co 7150 1oc1o 8105 2oc2o 8106 0cc0 10575 ...cfz 12939 ♯chash 13740 Word cword 13913 splice csplice 14158 〈“cs2 14250 ~FG cefg 18899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-ot 4531 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-2o 8113 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-fzo 13083 df-hash 13741 df-word 13914 df-concat 13970 df-s1 13997 df-substr 14050 df-pfx 14080 df-splice 14159 df-s2 14257 df-efg 18902 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |