MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgi1 Structured version   Visualization version   GIF version

Theorem efgi1 19707
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
Assertion
Ref Expression
efgi1 ((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽𝐼) → 𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 1o⟩⟨𝐽, ∅⟩”⟩⟩))

Proof of Theorem efgi1
StepHypRef Expression
1 1oex 8495 . . . . . 6 1o ∈ V
21prid2 4744 . . . . 5 1o ∈ {∅, 1o}
3 df2o3 8493 . . . . 5 2o = {∅, 1o}
42, 3eleqtrri 2834 . . . 4 1o ∈ 2o
5 efgval.w . . . . 5 𝑊 = ( I ‘Word (𝐼 × 2o))
6 efgval.r . . . . 5 = ( ~FG𝐼)
75, 6efgi 19705 . . . 4 (((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽𝐼 ∧ 1o ∈ 2o)) → 𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 1o⟩⟨𝐽, (1o ∖ 1o)⟩”⟩⟩))
84, 7mpanr2 704 . . 3 (((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴))) ∧ 𝐽𝐼) → 𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 1o⟩⟨𝐽, (1o ∖ 1o)⟩”⟩⟩))
983impa 1109 . 2 ((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽𝐼) → 𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 1o⟩⟨𝐽, (1o ∖ 1o)⟩”⟩⟩))
10 tru 1544 . . . 4
11 eqidd 2737 . . . . 5 (⊤ → ⟨𝐽, 1o⟩ = ⟨𝐽, 1o⟩)
12 difid 4356 . . . . . . 7 (1o ∖ 1o) = ∅
1312opeq2i 4858 . . . . . 6 𝐽, (1o ∖ 1o)⟩ = ⟨𝐽, ∅⟩
1413a1i 11 . . . . 5 (⊤ → ⟨𝐽, (1o ∖ 1o)⟩ = ⟨𝐽, ∅⟩)
1511, 14s2eqd 14887 . . . 4 (⊤ → ⟨“⟨𝐽, 1o⟩⟨𝐽, (1o ∖ 1o)⟩”⟩ = ⟨“⟨𝐽, 1o⟩⟨𝐽, ∅⟩”⟩)
16 oteq3 4865 . . . 4 (⟨“⟨𝐽, 1o⟩⟨𝐽, (1o ∖ 1o)⟩”⟩ = ⟨“⟨𝐽, 1o⟩⟨𝐽, ∅⟩”⟩ → ⟨𝑁, 𝑁, ⟨“⟨𝐽, 1o⟩⟨𝐽, (1o ∖ 1o)⟩”⟩⟩ = ⟨𝑁, 𝑁, ⟨“⟨𝐽, 1o⟩⟨𝐽, ∅⟩”⟩⟩)
1710, 15, 16mp2b 10 . . 3 𝑁, 𝑁, ⟨“⟨𝐽, 1o⟩⟨𝐽, (1o ∖ 1o)⟩”⟩⟩ = ⟨𝑁, 𝑁, ⟨“⟨𝐽, 1o⟩⟨𝐽, ∅⟩”⟩⟩
1817oveq2i 7421 . 2 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 1o⟩⟨𝐽, (1o ∖ 1o)⟩”⟩⟩) = (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 1o⟩⟨𝐽, ∅⟩”⟩⟩)
199, 18breqtrdi 5165 1 ((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽𝐼) → 𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 1o⟩⟨𝐽, ∅⟩”⟩⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  cdif 3928  c0 4313  {cpr 4608  cop 4612  cotp 4614   class class class wbr 5124   I cid 5552   × cxp 5657  cfv 6536  (class class class)co 7410  1oc1o 8478  2oc2o 8479  0cc0 11134  ...cfz 13529  chash 14353  Word cword 14536   splice csplice 14772  ⟨“cs2 14865   ~FG cefg 19692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-concat 14594  df-s1 14619  df-substr 14664  df-pfx 14694  df-splice 14773  df-s2 14872  df-efg 19695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator