Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efgi1 | Structured version Visualization version GIF version |
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
Ref | Expression |
---|---|
efgi1 | ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 8307 | . . . . . 6 ⊢ 1o ∈ V | |
2 | 1 | prid2 4699 | . . . . 5 ⊢ 1o ∈ {∅, 1o} |
3 | df2o3 8305 | . . . . 5 ⊢ 2o = {∅, 1o} | |
4 | 2, 3 | eleqtrri 2838 | . . . 4 ⊢ 1o ∈ 2o |
5 | efgval.w | . . . . 5 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
6 | efgval.r | . . . . 5 ⊢ ∼ = ( ~FG ‘𝐼) | |
7 | 5, 6 | efgi 19325 | . . . 4 ⊢ (((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽 ∈ 𝐼 ∧ 1o ∈ 2o)) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉〉)) |
8 | 4, 7 | mpanr2 701 | . . 3 ⊢ (((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴))) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉〉)) |
9 | 8 | 3impa 1109 | . 2 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉〉)) |
10 | tru 1543 | . . . 4 ⊢ ⊤ | |
11 | eqidd 2739 | . . . . 5 ⊢ (⊤ → 〈𝐽, 1o〉 = 〈𝐽, 1o〉) | |
12 | difid 4304 | . . . . . . 7 ⊢ (1o ∖ 1o) = ∅ | |
13 | 12 | opeq2i 4808 | . . . . . 6 ⊢ 〈𝐽, (1o ∖ 1o)〉 = 〈𝐽, ∅〉 |
14 | 13 | a1i 11 | . . . . 5 ⊢ (⊤ → 〈𝐽, (1o ∖ 1o)〉 = 〈𝐽, ∅〉) |
15 | 11, 14 | s2eqd 14576 | . . . 4 ⊢ (⊤ → 〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉 = 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉) |
16 | oteq3 4815 | . . . 4 ⊢ (〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉 = 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉 → 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉〉 = 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉〉) | |
17 | 10, 15, 16 | mp2b 10 | . . 3 ⊢ 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉〉 = 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉〉 |
18 | 17 | oveq2i 7286 | . 2 ⊢ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉〉) = (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉〉) |
19 | 9, 18 | breqtrdi 5115 | 1 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 ∖ cdif 3884 ∅c0 4256 {cpr 4563 〈cop 4567 〈cotp 4569 class class class wbr 5074 I cid 5488 × cxp 5587 ‘cfv 6433 (class class class)co 7275 1oc1o 8290 2oc2o 8291 0cc0 10871 ...cfz 13239 ♯chash 14044 Word cword 14217 splice csplice 14462 〈“cs2 14554 ~FG cefg 19312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-ot 4570 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-concat 14274 df-s1 14301 df-substr 14354 df-pfx 14384 df-splice 14463 df-s2 14561 df-efg 19315 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |