MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgi1 Structured version   Visualization version   GIF version

Theorem efgi1 18769
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
Assertion
Ref Expression
efgi1 ((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽𝐼) → 𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 1o⟩⟨𝐽, ∅⟩”⟩⟩))

Proof of Theorem efgi1
StepHypRef Expression
1 1oex 8104 . . . . . 6 1o ∈ V
21prid2 4697 . . . . 5 1o ∈ {∅, 1o}
3 df2o3 8111 . . . . 5 2o = {∅, 1o}
42, 3eleqtrri 2916 . . . 4 1o ∈ 2o
5 efgval.w . . . . 5 𝑊 = ( I ‘Word (𝐼 × 2o))
6 efgval.r . . . . 5 = ( ~FG𝐼)
75, 6efgi 18767 . . . 4 (((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽𝐼 ∧ 1o ∈ 2o)) → 𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 1o⟩⟨𝐽, (1o ∖ 1o)⟩”⟩⟩))
84, 7mpanr2 700 . . 3 (((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴))) ∧ 𝐽𝐼) → 𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 1o⟩⟨𝐽, (1o ∖ 1o)⟩”⟩⟩))
983impa 1104 . 2 ((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽𝐼) → 𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 1o⟩⟨𝐽, (1o ∖ 1o)⟩”⟩⟩))
10 tru 1534 . . . 4
11 eqidd 2825 . . . . 5 (⊤ → ⟨𝐽, 1o⟩ = ⟨𝐽, 1o⟩)
12 difid 4333 . . . . . . 7 (1o ∖ 1o) = ∅
1312opeq2i 4805 . . . . . 6 𝐽, (1o ∖ 1o)⟩ = ⟨𝐽, ∅⟩
1413a1i 11 . . . . 5 (⊤ → ⟨𝐽, (1o ∖ 1o)⟩ = ⟨𝐽, ∅⟩)
1511, 14s2eqd 14218 . . . 4 (⊤ → ⟨“⟨𝐽, 1o⟩⟨𝐽, (1o ∖ 1o)⟩”⟩ = ⟨“⟨𝐽, 1o⟩⟨𝐽, ∅⟩”⟩)
16 oteq3 4812 . . . 4 (⟨“⟨𝐽, 1o⟩⟨𝐽, (1o ∖ 1o)⟩”⟩ = ⟨“⟨𝐽, 1o⟩⟨𝐽, ∅⟩”⟩ → ⟨𝑁, 𝑁, ⟨“⟨𝐽, 1o⟩⟨𝐽, (1o ∖ 1o)⟩”⟩⟩ = ⟨𝑁, 𝑁, ⟨“⟨𝐽, 1o⟩⟨𝐽, ∅⟩”⟩⟩)
1710, 15, 16mp2b 10 . . 3 𝑁, 𝑁, ⟨“⟨𝐽, 1o⟩⟨𝐽, (1o ∖ 1o)⟩”⟩⟩ = ⟨𝑁, 𝑁, ⟨“⟨𝐽, 1o⟩⟨𝐽, ∅⟩”⟩⟩
1817oveq2i 7162 . 2 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 1o⟩⟨𝐽, (1o ∖ 1o)⟩”⟩⟩) = (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 1o⟩⟨𝐽, ∅⟩”⟩⟩)
199, 18breqtrdi 5103 1 ((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽𝐼) → 𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 1o⟩⟨𝐽, ∅⟩”⟩⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wtru 1531  wcel 2106  cdif 3936  c0 4294  {cpr 4565  cop 4569  cotp 4571   class class class wbr 5062   I cid 5457   × cxp 5551  cfv 6351  (class class class)co 7151  1oc1o 8089  2oc2o 8090  0cc0 10529  ...cfz 12885  chash 13683  Word cword 13854   splice csplice 14104  ⟨“cs2 14196   ~FG cefg 18754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-ot 4572  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886  df-fzo 13027  df-hash 13684  df-word 13855  df-concat 13916  df-s1 13943  df-substr 13996  df-pfx 14026  df-splice 14105  df-s2 14203  df-efg 18757
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator