| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgi1 | Structured version Visualization version GIF version | ||
| Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| Ref | Expression |
|---|---|
| efgi1 | ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 8395 | . . . . . 6 ⊢ 1o ∈ V | |
| 2 | 1 | prid2 4713 | . . . . 5 ⊢ 1o ∈ {∅, 1o} |
| 3 | df2o3 8393 | . . . . 5 ⊢ 2o = {∅, 1o} | |
| 4 | 2, 3 | eleqtrri 2830 | . . . 4 ⊢ 1o ∈ 2o |
| 5 | efgval.w | . . . . 5 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 6 | efgval.r | . . . . 5 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 7 | 5, 6 | efgi 19631 | . . . 4 ⊢ (((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽 ∈ 𝐼 ∧ 1o ∈ 2o)) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉〉)) |
| 8 | 4, 7 | mpanr2 704 | . . 3 ⊢ (((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴))) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉〉)) |
| 9 | 8 | 3impa 1109 | . 2 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉〉)) |
| 10 | tru 1545 | . . . 4 ⊢ ⊤ | |
| 11 | eqidd 2732 | . . . . 5 ⊢ (⊤ → 〈𝐽, 1o〉 = 〈𝐽, 1o〉) | |
| 12 | difid 4323 | . . . . . . 7 ⊢ (1o ∖ 1o) = ∅ | |
| 13 | 12 | opeq2i 4826 | . . . . . 6 ⊢ 〈𝐽, (1o ∖ 1o)〉 = 〈𝐽, ∅〉 |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (⊤ → 〈𝐽, (1o ∖ 1o)〉 = 〈𝐽, ∅〉) |
| 15 | 11, 14 | s2eqd 14770 | . . . 4 ⊢ (⊤ → 〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉 = 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉) |
| 16 | oteq3 4833 | . . . 4 ⊢ (〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉 = 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉 → 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉〉 = 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉〉) | |
| 17 | 10, 15, 16 | mp2b 10 | . . 3 ⊢ 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉〉 = 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉〉 |
| 18 | 17 | oveq2i 7357 | . 2 ⊢ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, (1o ∖ 1o)〉”〉〉) = (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉〉) |
| 19 | 9, 18 | breqtrdi 5130 | 1 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1o〉〈𝐽, ∅〉”〉〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 ∖ cdif 3894 ∅c0 4280 {cpr 4575 〈cop 4579 〈cotp 4581 class class class wbr 5089 I cid 5508 × cxp 5612 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 2oc2o 8379 0cc0 11006 ...cfz 13407 ♯chash 14237 Word cword 14420 splice csplice 14656 〈“cs2 14748 ~FG cefg 19618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-substr 14549 df-pfx 14579 df-splice 14657 df-s2 14755 df-efg 19621 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |