MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  splval Structured version   Visualization version   GIF version

Theorem splval 14113
Description: Value of the substring replacement operator. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by AV, 11-May-2020.) (Revised by AV, 15-Oct-2022.)
Assertion
Ref Expression
splval ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))

Proof of Theorem splval
Dummy variables 𝑠 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-splice 14112 . . 3 splice = (𝑠 ∈ V, 𝑏 ∈ V ↦ (((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) ++ (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩)))
21a1i 11 . 2 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → splice = (𝑠 ∈ V, 𝑏 ∈ V ↦ (((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) ++ (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩))))
3 simprl 769 . . . . 5 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → 𝑠 = 𝑆)
4 2fveq3 6675 . . . . . . 7 (𝑏 = ⟨𝐹, 𝑇, 𝑅⟩ → (1st ‘(1st𝑏)) = (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)))
54adantl 484 . . . . . 6 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (1st ‘(1st𝑏)) = (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)))
6 ot1stg 7703 . . . . . . 7 ((𝐹𝑊𝑇𝑋𝑅𝑌) → (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)) = 𝐹)
76adantl 484 . . . . . 6 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)) = 𝐹)
85, 7sylan9eqr 2878 . . . . 5 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → (1st ‘(1st𝑏)) = 𝐹)
93, 8oveq12d 7174 . . . 4 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → (𝑠 prefix (1st ‘(1st𝑏))) = (𝑆 prefix 𝐹))
10 fveq2 6670 . . . . . 6 (𝑏 = ⟨𝐹, 𝑇, 𝑅⟩ → (2nd𝑏) = (2nd ‘⟨𝐹, 𝑇, 𝑅⟩))
1110adantl 484 . . . . 5 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (2nd𝑏) = (2nd ‘⟨𝐹, 𝑇, 𝑅⟩))
12 ot3rdg 7705 . . . . . . 7 (𝑅𝑌 → (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) = 𝑅)
13123ad2ant3 1131 . . . . . 6 ((𝐹𝑊𝑇𝑋𝑅𝑌) → (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) = 𝑅)
1413adantl 484 . . . . 5 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) = 𝑅)
1511, 14sylan9eqr 2878 . . . 4 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → (2nd𝑏) = 𝑅)
169, 15oveq12d 7174 . . 3 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → ((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) = ((𝑆 prefix 𝐹) ++ 𝑅))
17 2fveq3 6675 . . . . . . 7 (𝑏 = ⟨𝐹, 𝑇, 𝑅⟩ → (2nd ‘(1st𝑏)) = (2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)))
1817adantl 484 . . . . . 6 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (2nd ‘(1st𝑏)) = (2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)))
19 ot2ndg 7704 . . . . . . 7 ((𝐹𝑊𝑇𝑋𝑅𝑌) → (2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)) = 𝑇)
2019adantl 484 . . . . . 6 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → (2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)) = 𝑇)
2118, 20sylan9eqr 2878 . . . . 5 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → (2nd ‘(1st𝑏)) = 𝑇)
223fveq2d 6674 . . . . 5 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → (♯‘𝑠) = (♯‘𝑆))
2321, 22opeq12d 4811 . . . 4 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩ = ⟨𝑇, (♯‘𝑆)⟩)
243, 23oveq12d 7174 . . 3 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩) = (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))
2516, 24oveq12d 7174 . 2 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → (((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) ++ (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩)) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
26 elex 3512 . . 3 (𝑆𝑉𝑆 ∈ V)
2726adantr 483 . 2 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → 𝑆 ∈ V)
28 otex 5357 . . 3 𝐹, 𝑇, 𝑅⟩ ∈ V
2928a1i 11 . 2 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → ⟨𝐹, 𝑇, 𝑅⟩ ∈ V)
30 ovexd 7191 . 2 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) ∈ V)
312, 25, 27, 29, 30ovmpod 7302 1 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3494  cop 4573  cotp 4575  cfv 6355  (class class class)co 7156  cmpo 7158  1st c1st 7687  2nd c2nd 7688  chash 13691   ++ cconcat 13922   substr csubstr 14002   prefix cpfx 14032   splice csplice 14111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-ot 4576  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-splice 14112
This theorem is referenced by:  splid  14115  spllen  14116  splfv1  14117  splfv2a  14118  splval2  14119  gsumspl  18009  efgredleme  18869  efgredlemc  18871  efgcpbllemb  18881  frgpuplem  18898  splfv3  30632  cycpmco2f1  30766  cycpmco2rn  30767  cycpmco2lem2  30769  cycpmco2lem3  30770  cycpmco2lem4  30771  cycpmco2lem5  30772  cycpmco2lem6  30773  cycpmco2  30775
  Copyright terms: Public domain W3C validator