MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  splval Structured version   Visualization version   GIF version

Theorem splval 14675
Description: Value of the substring replacement operator. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by AV, 11-May-2020.) (Revised by AV, 15-Oct-2022.)
Assertion
Ref Expression
splval ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))

Proof of Theorem splval
Dummy variables 𝑠 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-splice 14674 . . 3 splice = (𝑠 ∈ V, 𝑏 ∈ V ↦ (((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) ++ (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩)))
21a1i 11 . 2 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → splice = (𝑠 ∈ V, 𝑏 ∈ V ↦ (((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) ++ (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩))))
3 simprl 770 . . . . 5 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → 𝑠 = 𝑆)
4 2fveq3 6831 . . . . . . 7 (𝑏 = ⟨𝐹, 𝑇, 𝑅⟩ → (1st ‘(1st𝑏)) = (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)))
54adantl 481 . . . . . 6 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (1st ‘(1st𝑏)) = (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)))
6 ot1stg 7945 . . . . . . 7 ((𝐹𝑊𝑇𝑋𝑅𝑌) → (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)) = 𝐹)
76adantl 481 . . . . . 6 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)) = 𝐹)
85, 7sylan9eqr 2786 . . . . 5 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → (1st ‘(1st𝑏)) = 𝐹)
93, 8oveq12d 7371 . . . 4 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → (𝑠 prefix (1st ‘(1st𝑏))) = (𝑆 prefix 𝐹))
10 fveq2 6826 . . . . . 6 (𝑏 = ⟨𝐹, 𝑇, 𝑅⟩ → (2nd𝑏) = (2nd ‘⟨𝐹, 𝑇, 𝑅⟩))
1110adantl 481 . . . . 5 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (2nd𝑏) = (2nd ‘⟨𝐹, 𝑇, 𝑅⟩))
12 ot3rdg 7947 . . . . . . 7 (𝑅𝑌 → (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) = 𝑅)
13123ad2ant3 1135 . . . . . 6 ((𝐹𝑊𝑇𝑋𝑅𝑌) → (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) = 𝑅)
1413adantl 481 . . . . 5 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) = 𝑅)
1511, 14sylan9eqr 2786 . . . 4 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → (2nd𝑏) = 𝑅)
169, 15oveq12d 7371 . . 3 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → ((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) = ((𝑆 prefix 𝐹) ++ 𝑅))
17 2fveq3 6831 . . . . . . 7 (𝑏 = ⟨𝐹, 𝑇, 𝑅⟩ → (2nd ‘(1st𝑏)) = (2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)))
1817adantl 481 . . . . . 6 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (2nd ‘(1st𝑏)) = (2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)))
19 ot2ndg 7946 . . . . . . 7 ((𝐹𝑊𝑇𝑋𝑅𝑌) → (2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)) = 𝑇)
2019adantl 481 . . . . . 6 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → (2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)) = 𝑇)
2118, 20sylan9eqr 2786 . . . . 5 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → (2nd ‘(1st𝑏)) = 𝑇)
223fveq2d 6830 . . . . 5 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → (♯‘𝑠) = (♯‘𝑆))
2321, 22opeq12d 4835 . . . 4 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩ = ⟨𝑇, (♯‘𝑆)⟩)
243, 23oveq12d 7371 . . 3 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩) = (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))
2516, 24oveq12d 7371 . 2 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → (((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) ++ (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩)) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
26 elex 3459 . . 3 (𝑆𝑉𝑆 ∈ V)
2726adantr 480 . 2 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → 𝑆 ∈ V)
28 otex 5412 . . 3 𝐹, 𝑇, 𝑅⟩ ∈ V
2928a1i 11 . 2 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → ⟨𝐹, 𝑇, 𝑅⟩ ∈ V)
30 ovexd 7388 . 2 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) ∈ V)
312, 25, 27, 29, 30ovmpod 7505 1 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  cop 4585  cotp 4587  cfv 6486  (class class class)co 7353  cmpo 7355  1st c1st 7929  2nd c2nd 7930  chash 14255   ++ cconcat 14495   substr csubstr 14565   prefix cpfx 14595   splice csplice 14673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-ot 4588  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-splice 14674
This theorem is referenced by:  splid  14677  spllen  14678  splfv1  14679  splfv2a  14680  splval2  14681  gsumspl  18736  efgredleme  19640  efgredlemc  19642  efgcpbllemb  19652  frgpuplem  19669  splfv3  32913  cycpmco2f1  33079  cycpmco2rn  33080  cycpmco2lem2  33082  cycpmco2lem3  33083  cycpmco2lem4  33084  cycpmco2lem5  33085  cycpmco2lem6  33086  cycpmco2  33088
  Copyright terms: Public domain W3C validator