MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  splval Structured version   Visualization version   GIF version

Theorem splval 14660
Description: Value of the substring replacement operator. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by AV, 11-May-2020.) (Revised by AV, 15-Oct-2022.)
Assertion
Ref Expression
splval ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))

Proof of Theorem splval
Dummy variables 𝑠 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-splice 14659 . . 3 splice = (𝑠 ∈ V, 𝑏 ∈ V ↦ (((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) ++ (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩)))
21a1i 11 . 2 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → splice = (𝑠 ∈ V, 𝑏 ∈ V ↦ (((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) ++ (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩))))
3 simprl 770 . . . . 5 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → 𝑠 = 𝑆)
4 2fveq3 6833 . . . . . . 7 (𝑏 = ⟨𝐹, 𝑇, 𝑅⟩ → (1st ‘(1st𝑏)) = (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)))
54adantl 481 . . . . . 6 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (1st ‘(1st𝑏)) = (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)))
6 ot1stg 7941 . . . . . . 7 ((𝐹𝑊𝑇𝑋𝑅𝑌) → (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)) = 𝐹)
76adantl 481 . . . . . 6 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)) = 𝐹)
85, 7sylan9eqr 2790 . . . . 5 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → (1st ‘(1st𝑏)) = 𝐹)
93, 8oveq12d 7370 . . . 4 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → (𝑠 prefix (1st ‘(1st𝑏))) = (𝑆 prefix 𝐹))
10 fveq2 6828 . . . . . 6 (𝑏 = ⟨𝐹, 𝑇, 𝑅⟩ → (2nd𝑏) = (2nd ‘⟨𝐹, 𝑇, 𝑅⟩))
1110adantl 481 . . . . 5 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (2nd𝑏) = (2nd ‘⟨𝐹, 𝑇, 𝑅⟩))
12 ot3rdg 7943 . . . . . . 7 (𝑅𝑌 → (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) = 𝑅)
13123ad2ant3 1135 . . . . . 6 ((𝐹𝑊𝑇𝑋𝑅𝑌) → (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) = 𝑅)
1413adantl 481 . . . . 5 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) = 𝑅)
1511, 14sylan9eqr 2790 . . . 4 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → (2nd𝑏) = 𝑅)
169, 15oveq12d 7370 . . 3 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → ((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) = ((𝑆 prefix 𝐹) ++ 𝑅))
17 2fveq3 6833 . . . . . . 7 (𝑏 = ⟨𝐹, 𝑇, 𝑅⟩ → (2nd ‘(1st𝑏)) = (2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)))
1817adantl 481 . . . . . 6 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (2nd ‘(1st𝑏)) = (2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)))
19 ot2ndg 7942 . . . . . . 7 ((𝐹𝑊𝑇𝑋𝑅𝑌) → (2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)) = 𝑇)
2019adantl 481 . . . . . 6 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → (2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)) = 𝑇)
2118, 20sylan9eqr 2790 . . . . 5 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → (2nd ‘(1st𝑏)) = 𝑇)
223fveq2d 6832 . . . . 5 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → (♯‘𝑠) = (♯‘𝑆))
2321, 22opeq12d 4832 . . . 4 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩ = ⟨𝑇, (♯‘𝑆)⟩)
243, 23oveq12d 7370 . . 3 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩) = (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩))
2516, 24oveq12d 7370 . 2 (((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)) → (((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) ++ (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩)) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
26 elex 3458 . . 3 (𝑆𝑉𝑆 ∈ V)
2726adantr 480 . 2 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → 𝑆 ∈ V)
28 otex 5408 . . 3 𝐹, 𝑇, 𝑅⟩ ∈ V
2928a1i 11 . 2 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → ⟨𝐹, 𝑇, 𝑅⟩ ∈ V)
30 ovexd 7387 . 2 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) ∈ V)
312, 25, 27, 29, 30ovmpod 7504 1 ((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  cop 4581  cotp 4583  cfv 6486  (class class class)co 7352  cmpo 7354  1st c1st 7925  2nd c2nd 7926  chash 14239   ++ cconcat 14479   substr csubstr 14550   prefix cpfx 14580   splice csplice 14658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-ot 4584  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-splice 14659
This theorem is referenced by:  splid  14662  spllen  14663  splfv1  14664  splfv2a  14665  splval2  14666  gsumspl  18754  efgredleme  19657  efgredlemc  19659  efgcpbllemb  19669  frgpuplem  19686  splfv3  32946  cycpmco2f1  33100  cycpmco2rn  33101  cycpmco2lem2  33103  cycpmco2lem3  33104  cycpmco2lem4  33105  cycpmco2lem5  33106  cycpmco2lem6  33107  cycpmco2  33109
  Copyright terms: Public domain W3C validator