MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idaf Structured version   Visualization version   GIF version

Theorem idaf 17970
Description: The identity arrow function is a function from objects to arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
idafval.i 𝐼 = (Ida𝐶)
idafval.b 𝐵 = (Base‘𝐶)
idafval.c (𝜑𝐶 ∈ Cat)
idaf.a 𝐴 = (Arrow‘𝐶)
Assertion
Ref Expression
idaf (𝜑𝐼:𝐵𝐴)

Proof of Theorem idaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 otex 5408 . . 3 𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ V
21a1i 11 . 2 ((𝜑𝑥𝐵) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ V)
3 idafval.i . . 3 𝐼 = (Ida𝐶)
4 idafval.b . . 3 𝐵 = (Base‘𝐶)
5 idafval.c . . 3 (𝜑𝐶 ∈ Cat)
6 eqid 2729 . . 3 (Id‘𝐶) = (Id‘𝐶)
73, 4, 5, 6idafval 17964 . 2 (𝜑𝐼 = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩))
8 idaf.a . . . 4 𝐴 = (Arrow‘𝐶)
9 eqid 2729 . . . 4 (Homa𝐶) = (Homa𝐶)
108, 9homarw 17953 . . 3 (𝑥(Homa𝐶)𝑥) ⊆ 𝐴
115adantr 480 . . . 4 ((𝜑𝑥𝐵) → 𝐶 ∈ Cat)
12 simpr 484 . . . 4 ((𝜑𝑥𝐵) → 𝑥𝐵)
133, 4, 11, 12, 9idahom 17967 . . 3 ((𝜑𝑥𝐵) → (𝐼𝑥) ∈ (𝑥(Homa𝐶)𝑥))
1410, 13sselid 3933 . 2 ((𝜑𝑥𝐵) → (𝐼𝑥) ∈ 𝐴)
152, 7, 14fmpt2d 7058 1 (𝜑𝐼:𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cotp 4585  wf 6478  cfv 6482  (class class class)co 7349  Basecbs 17120  Catccat 17570  Idccid 17571  Arrowcarw 17929  Homachoma 17930  Idacida 17960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-ot 4586  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-cat 17574  df-cid 17575  df-homa 17933  df-arw 17934  df-ida 17962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator