MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idaf Structured version   Visualization version   GIF version

Theorem idaf 17694
Description: The identity arrow function is a function from objects to arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
idafval.i 𝐼 = (Ida𝐶)
idafval.b 𝐵 = (Base‘𝐶)
idafval.c (𝜑𝐶 ∈ Cat)
idaf.a 𝐴 = (Arrow‘𝐶)
Assertion
Ref Expression
idaf (𝜑𝐼:𝐵𝐴)

Proof of Theorem idaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 otex 5374 . . 3 𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ V
21a1i 11 . 2 ((𝜑𝑥𝐵) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ V)
3 idafval.i . . 3 𝐼 = (Ida𝐶)
4 idafval.b . . 3 𝐵 = (Base‘𝐶)
5 idafval.c . . 3 (𝜑𝐶 ∈ Cat)
6 eqid 2738 . . 3 (Id‘𝐶) = (Id‘𝐶)
73, 4, 5, 6idafval 17688 . 2 (𝜑𝐼 = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩))
8 idaf.a . . . 4 𝐴 = (Arrow‘𝐶)
9 eqid 2738 . . . 4 (Homa𝐶) = (Homa𝐶)
108, 9homarw 17677 . . 3 (𝑥(Homa𝐶)𝑥) ⊆ 𝐴
115adantr 480 . . . 4 ((𝜑𝑥𝐵) → 𝐶 ∈ Cat)
12 simpr 484 . . . 4 ((𝜑𝑥𝐵) → 𝑥𝐵)
133, 4, 11, 12, 9idahom 17691 . . 3 ((𝜑𝑥𝐵) → (𝐼𝑥) ∈ (𝑥(Homa𝐶)𝑥))
1410, 13sselid 3915 . 2 ((𝜑𝑥𝐵) → (𝐼𝑥) ∈ 𝐴)
152, 7, 14fmpt2d 6979 1 (𝜑𝐼:𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cotp 4566  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  Catccat 17290  Idccid 17291  Arrowcarw 17653  Homachoma 17654  Idacida 17684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-ot 4567  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-cat 17294  df-cid 17295  df-homa 17657  df-arw 17658  df-ida 17686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator