Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > idaf | Structured version Visualization version GIF version |
Description: The identity arrow function is a function from objects to arrows. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
idafval.i | ⊢ 𝐼 = (Ida‘𝐶) |
idafval.b | ⊢ 𝐵 = (Base‘𝐶) |
idafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
idaf.a | ⊢ 𝐴 = (Arrow‘𝐶) |
Ref | Expression |
---|---|
idaf | ⊢ (𝜑 → 𝐼:𝐵⟶𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | otex 5382 | . . 3 ⊢ 〈𝑥, 𝑥, ((Id‘𝐶)‘𝑥)〉 ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 〈𝑥, 𝑥, ((Id‘𝐶)‘𝑥)〉 ∈ V) |
3 | idafval.i | . . 3 ⊢ 𝐼 = (Ida‘𝐶) | |
4 | idafval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
5 | idafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
6 | eqid 2739 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
7 | 3, 4, 5, 6 | idafval 17753 | . 2 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵 ↦ 〈𝑥, 𝑥, ((Id‘𝐶)‘𝑥)〉)) |
8 | idaf.a | . . . 4 ⊢ 𝐴 = (Arrow‘𝐶) | |
9 | eqid 2739 | . . . 4 ⊢ (Homa‘𝐶) = (Homa‘𝐶) | |
10 | 8, 9 | homarw 17742 | . . 3 ⊢ (𝑥(Homa‘𝐶)𝑥) ⊆ 𝐴 |
11 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ Cat) |
12 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
13 | 3, 4, 11, 12, 9 | idahom 17756 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐼‘𝑥) ∈ (𝑥(Homa‘𝐶)𝑥)) |
14 | 10, 13 | sselid 3923 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐼‘𝑥) ∈ 𝐴) |
15 | 2, 7, 14 | fmpt2d 6991 | 1 ⊢ (𝜑 → 𝐼:𝐵⟶𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 〈cotp 4574 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 Catccat 17354 Idccid 17355 Arrowcarw 17718 Homachoma 17719 Idacida 17749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-ot 4575 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-cat 17358 df-cid 17359 df-homa 17722 df-arw 17723 df-ida 17751 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |