| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idaf | Structured version Visualization version GIF version | ||
| Description: The identity arrow function is a function from objects to arrows. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| idafval.i | ⊢ 𝐼 = (Ida‘𝐶) |
| idafval.b | ⊢ 𝐵 = (Base‘𝐶) |
| idafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| idaf.a | ⊢ 𝐴 = (Arrow‘𝐶) |
| Ref | Expression |
|---|---|
| idaf | ⊢ (𝜑 → 𝐼:𝐵⟶𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | otex 5428 | . . 3 ⊢ 〈𝑥, 𝑥, ((Id‘𝐶)‘𝑥)〉 ∈ V | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 〈𝑥, 𝑥, ((Id‘𝐶)‘𝑥)〉 ∈ V) |
| 3 | idafval.i | . . 3 ⊢ 𝐼 = (Ida‘𝐶) | |
| 4 | idafval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | idafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 6 | eqid 2730 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 7 | 3, 4, 5, 6 | idafval 18026 | . 2 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵 ↦ 〈𝑥, 𝑥, ((Id‘𝐶)‘𝑥)〉)) |
| 8 | idaf.a | . . . 4 ⊢ 𝐴 = (Arrow‘𝐶) | |
| 9 | eqid 2730 | . . . 4 ⊢ (Homa‘𝐶) = (Homa‘𝐶) | |
| 10 | 8, 9 | homarw 18015 | . . 3 ⊢ (𝑥(Homa‘𝐶)𝑥) ⊆ 𝐴 |
| 11 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ Cat) |
| 12 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 13 | 3, 4, 11, 12, 9 | idahom 18029 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐼‘𝑥) ∈ (𝑥(Homa‘𝐶)𝑥)) |
| 14 | 10, 13 | sselid 3947 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐼‘𝑥) ∈ 𝐴) |
| 15 | 2, 7, 14 | fmpt2d 7099 | 1 ⊢ (𝜑 → 𝐼:𝐵⟶𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 〈cotp 4600 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Catccat 17632 Idccid 17633 Arrowcarw 17991 Homachoma 17992 Idacida 18022 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-ot 4601 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-cat 17636 df-cid 17637 df-homa 17995 df-arw 17996 df-ida 18024 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |