MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmcoa Structured version   Visualization version   GIF version

Theorem eldmcoa 18011
Description: A pair ⟨𝐺, 𝐹⟩ is in the domain of the arrow composition, if the domain of 𝐺 equals the codomain of 𝐹. (In this case we say 𝐺 and 𝐹 are composable.) (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
coafval.o Β· = (compaβ€˜πΆ)
coafval.a 𝐴 = (Arrowβ€˜πΆ)
Assertion
Ref Expression
eldmcoa (𝐺dom Β· 𝐹 ↔ (𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ∧ (codaβ€˜πΉ) = (domaβ€˜πΊ)))

Proof of Theorem eldmcoa
Dummy variables 𝑓 𝑔 β„Ž are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5148 . 2 (𝐺dom Β· 𝐹 ↔ ⟨𝐺, 𝐹⟩ ∈ dom Β· )
2 otex 5464 . . . . . 6 ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩(compβ€˜πΆ)(codaβ€˜π‘”))(2nd β€˜π‘“))⟩ ∈ V
32rgen2w 3066 . . . . 5 βˆ€π‘” ∈ 𝐴 βˆ€π‘“ ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)}⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩(compβ€˜πΆ)(codaβ€˜π‘”))(2nd β€˜π‘“))⟩ ∈ V
4 coafval.o . . . . . . 7 Β· = (compaβ€˜πΆ)
5 coafval.a . . . . . . 7 𝐴 = (Arrowβ€˜πΆ)
6 eqid 2732 . . . . . . 7 (compβ€˜πΆ) = (compβ€˜πΆ)
74, 5, 6coafval 18010 . . . . . 6 Β· = (𝑔 ∈ 𝐴, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩(compβ€˜πΆ)(codaβ€˜π‘”))(2nd β€˜π‘“))⟩)
87fmpox 8049 . . . . 5 (βˆ€π‘” ∈ 𝐴 βˆ€π‘“ ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)}⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩(compβ€˜πΆ)(codaβ€˜π‘”))(2nd β€˜π‘“))⟩ ∈ V ↔ Β· :βˆͺ 𝑔 ∈ 𝐴 ({𝑔} Γ— {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)})⟢V)
93, 8mpbi 229 . . . 4 Β· :βˆͺ 𝑔 ∈ 𝐴 ({𝑔} Γ— {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)})⟢V
109fdmi 6726 . . 3 dom Β· = βˆͺ 𝑔 ∈ 𝐴 ({𝑔} Γ— {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)})
1110eleq2i 2825 . 2 (⟨𝐺, 𝐹⟩ ∈ dom Β· ↔ ⟨𝐺, 𝐹⟩ ∈ βˆͺ 𝑔 ∈ 𝐴 ({𝑔} Γ— {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)}))
12 fveq2 6888 . . . . . 6 (𝑔 = 𝐺 β†’ (domaβ€˜π‘”) = (domaβ€˜πΊ))
1312eqeq2d 2743 . . . . 5 (𝑔 = 𝐺 β†’ ((codaβ€˜β„Ž) = (domaβ€˜π‘”) ↔ (codaβ€˜β„Ž) = (domaβ€˜πΊ)))
1413rabbidv 3440 . . . 4 (𝑔 = 𝐺 β†’ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} = {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜πΊ)})
1514opeliunxp2 5836 . . 3 (⟨𝐺, 𝐹⟩ ∈ βˆͺ 𝑔 ∈ 𝐴 ({𝑔} Γ— {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)}) ↔ (𝐺 ∈ 𝐴 ∧ 𝐹 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜πΊ)}))
16 fveqeq2 6897 . . . . 5 (β„Ž = 𝐹 β†’ ((codaβ€˜β„Ž) = (domaβ€˜πΊ) ↔ (codaβ€˜πΉ) = (domaβ€˜πΊ)))
1716elrab 3682 . . . 4 (𝐹 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜πΊ)} ↔ (𝐹 ∈ 𝐴 ∧ (codaβ€˜πΉ) = (domaβ€˜πΊ)))
1817anbi2i 623 . . 3 ((𝐺 ∈ 𝐴 ∧ 𝐹 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜πΊ)}) ↔ (𝐺 ∈ 𝐴 ∧ (𝐹 ∈ 𝐴 ∧ (codaβ€˜πΉ) = (domaβ€˜πΊ))))
19 an12 643 . . . 4 ((𝐺 ∈ 𝐴 ∧ (𝐹 ∈ 𝐴 ∧ (codaβ€˜πΉ) = (domaβ€˜πΊ))) ↔ (𝐹 ∈ 𝐴 ∧ (𝐺 ∈ 𝐴 ∧ (codaβ€˜πΉ) = (domaβ€˜πΊ))))
20 3anass 1095 . . . 4 ((𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ∧ (codaβ€˜πΉ) = (domaβ€˜πΊ)) ↔ (𝐹 ∈ 𝐴 ∧ (𝐺 ∈ 𝐴 ∧ (codaβ€˜πΉ) = (domaβ€˜πΊ))))
2119, 20bitr4i 277 . . 3 ((𝐺 ∈ 𝐴 ∧ (𝐹 ∈ 𝐴 ∧ (codaβ€˜πΉ) = (domaβ€˜πΊ))) ↔ (𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ∧ (codaβ€˜πΉ) = (domaβ€˜πΊ)))
2215, 18, 213bitri 296 . 2 (⟨𝐺, 𝐹⟩ ∈ βˆͺ 𝑔 ∈ 𝐴 ({𝑔} Γ— {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)}) ↔ (𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ∧ (codaβ€˜πΉ) = (domaβ€˜πΊ)))
231, 11, 223bitri 296 1 (𝐺dom Β· 𝐹 ↔ (𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ∧ (codaβ€˜πΉ) = (domaβ€˜πΊ)))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {crab 3432  Vcvv 3474  {csn 4627  βŸ¨cop 4633  βŸ¨cotp 4635  βˆͺ ciun 4996   class class class wbr 5147   Γ— cxp 5673  dom cdm 5675  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  2nd c2nd 7970  compcco 17205  domacdoma 17966  codaccoda 17967  Arrowcarw 17968  compaccoa 18000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-ot 4636  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-arw 17973  df-coa 18002
This theorem is referenced by:  homdmcoa  18013  coapm  18017
  Copyright terms: Public domain W3C validator