Step | Hyp | Ref
| Expression |
1 | | df-br 5075 |
. 2
⊢ (𝐺dom · 𝐹 ↔ 〈𝐺, 𝐹〉 ∈ dom · ) |
2 | | otex 5380 |
. . . . . 6
⊢
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝐶)(coda‘𝑔))(2nd ‘𝑓))〉 ∈
V |
3 | 2 | rgen2w 3077 |
. . . . 5
⊢
∀𝑔 ∈
𝐴 ∀𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)}〈(doma‘𝑓),
(coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝐶)(coda‘𝑔))(2nd ‘𝑓))〉 ∈
V |
4 | | coafval.o |
. . . . . . 7
⊢ · =
(compa‘𝐶) |
5 | | coafval.a |
. . . . . . 7
⊢ 𝐴 = (Arrow‘𝐶) |
6 | | eqid 2738 |
. . . . . . 7
⊢
(comp‘𝐶) =
(comp‘𝐶) |
7 | 4, 5, 6 | coafval 17779 |
. . . . . 6
⊢ · =
(𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝐶)(coda‘𝑔))(2nd ‘𝑓))〉) |
8 | 7 | fmpox 7907 |
. . . . 5
⊢
(∀𝑔 ∈
𝐴 ∀𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)}〈(doma‘𝑓),
(coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝐶)(coda‘𝑔))(2nd ‘𝑓))〉 ∈ V ↔ ·
:∪ 𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)})⟶V) |
9 | 3, 8 | mpbi 229 |
. . . 4
⊢ ·
:∪ 𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)})⟶V |
10 | 9 | fdmi 6612 |
. . 3
⊢ dom · =
∪ 𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)}) |
11 | 10 | eleq2i 2830 |
. 2
⊢
(〈𝐺, 𝐹〉 ∈ dom · ↔
〈𝐺, 𝐹〉 ∈ ∪ 𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)})) |
12 | | fveq2 6774 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (doma‘𝑔) =
(doma‘𝐺)) |
13 | 12 | eqeq2d 2749 |
. . . . 5
⊢ (𝑔 = 𝐺 → ((coda‘ℎ) =
(doma‘𝑔) ↔ (coda‘ℎ) =
(doma‘𝐺))) |
14 | 13 | rabbidv 3414 |
. . . 4
⊢ (𝑔 = 𝐺 → {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} = {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝐺)}) |
15 | 14 | opeliunxp2 5747 |
. . 3
⊢
(〈𝐺, 𝐹〉 ∈ ∪ 𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)}) ↔ (𝐺 ∈ 𝐴 ∧ 𝐹 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝐺)})) |
16 | | fveqeq2 6783 |
. . . . 5
⊢ (ℎ = 𝐹 → ((coda‘ℎ) =
(doma‘𝐺) ↔ (coda‘𝐹) =
(doma‘𝐺))) |
17 | 16 | elrab 3624 |
. . . 4
⊢ (𝐹 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝐺)} ↔ (𝐹 ∈ 𝐴 ∧ (coda‘𝐹) =
(doma‘𝐺))) |
18 | 17 | anbi2i 623 |
. . 3
⊢ ((𝐺 ∈ 𝐴 ∧ 𝐹 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝐺)}) ↔ (𝐺 ∈ 𝐴 ∧ (𝐹 ∈ 𝐴 ∧ (coda‘𝐹) =
(doma‘𝐺)))) |
19 | | an12 642 |
. . . 4
⊢ ((𝐺 ∈ 𝐴 ∧ (𝐹 ∈ 𝐴 ∧ (coda‘𝐹) =
(doma‘𝐺))) ↔ (𝐹 ∈ 𝐴 ∧ (𝐺 ∈ 𝐴 ∧ (coda‘𝐹) =
(doma‘𝐺)))) |
20 | | 3anass 1094 |
. . . 4
⊢ ((𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ∧ (coda‘𝐹) =
(doma‘𝐺)) ↔ (𝐹 ∈ 𝐴 ∧ (𝐺 ∈ 𝐴 ∧ (coda‘𝐹) =
(doma‘𝐺)))) |
21 | 19, 20 | bitr4i 277 |
. . 3
⊢ ((𝐺 ∈ 𝐴 ∧ (𝐹 ∈ 𝐴 ∧ (coda‘𝐹) =
(doma‘𝐺))) ↔ (𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ∧ (coda‘𝐹) =
(doma‘𝐺))) |
22 | 15, 18, 21 | 3bitri 297 |
. 2
⊢
(〈𝐺, 𝐹〉 ∈ ∪ 𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)}) ↔ (𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ∧ (coda‘𝐹) =
(doma‘𝐺))) |
23 | 1, 11, 22 | 3bitri 297 |
1
⊢ (𝐺dom · 𝐹 ↔ (𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ∧ (coda‘𝐹) =
(doma‘𝐺))) |