MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmcoa Structured version   Visualization version   GIF version

Theorem eldmcoa 18054
Description: A pair 𝐺, 𝐹 is in the domain of the arrow composition, if the domain of 𝐺 equals the codomain of 𝐹. (In this case we say 𝐺 and 𝐹 are composable.) (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
coafval.o · = (compa𝐶)
coafval.a 𝐴 = (Arrow‘𝐶)
Assertion
Ref Expression
eldmcoa (𝐺dom · 𝐹 ↔ (𝐹𝐴𝐺𝐴 ∧ (coda𝐹) = (doma𝐺)))

Proof of Theorem eldmcoa
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5149 . 2 (𝐺dom · 𝐹 ↔ ⟨𝐺, 𝐹⟩ ∈ dom · )
2 otex 5467 . . . . . 6 ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝐶)(coda𝑔))(2nd𝑓))⟩ ∈ V
32rgen2w 3063 . . . . 5 𝑔𝐴𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)}⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝐶)(coda𝑔))(2nd𝑓))⟩ ∈ V
4 coafval.o . . . . . . 7 · = (compa𝐶)
5 coafval.a . . . . . . 7 𝐴 = (Arrow‘𝐶)
6 eqid 2728 . . . . . . 7 (comp‘𝐶) = (comp‘𝐶)
74, 5, 6coafval 18053 . . . . . 6 · = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝐶)(coda𝑔))(2nd𝑓))⟩)
87fmpox 8071 . . . . 5 (∀𝑔𝐴𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)}⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝐶)(coda𝑔))(2nd𝑓))⟩ ∈ V ↔ · : 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)})⟶V)
93, 8mpbi 229 . . . 4 · : 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)})⟶V
109fdmi 6734 . . 3 dom · = 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)})
1110eleq2i 2821 . 2 (⟨𝐺, 𝐹⟩ ∈ dom · ↔ ⟨𝐺, 𝐹⟩ ∈ 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}))
12 fveq2 6897 . . . . . 6 (𝑔 = 𝐺 → (doma𝑔) = (doma𝐺))
1312eqeq2d 2739 . . . . 5 (𝑔 = 𝐺 → ((coda) = (doma𝑔) ↔ (coda) = (doma𝐺)))
1413rabbidv 3437 . . . 4 (𝑔 = 𝐺 → {𝐴 ∣ (coda) = (doma𝑔)} = {𝐴 ∣ (coda) = (doma𝐺)})
1514opeliunxp2 5841 . . 3 (⟨𝐺, 𝐹⟩ ∈ 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}) ↔ (𝐺𝐴𝐹 ∈ {𝐴 ∣ (coda) = (doma𝐺)}))
16 fveqeq2 6906 . . . . 5 ( = 𝐹 → ((coda) = (doma𝐺) ↔ (coda𝐹) = (doma𝐺)))
1716elrab 3682 . . . 4 (𝐹 ∈ {𝐴 ∣ (coda) = (doma𝐺)} ↔ (𝐹𝐴 ∧ (coda𝐹) = (doma𝐺)))
1817anbi2i 622 . . 3 ((𝐺𝐴𝐹 ∈ {𝐴 ∣ (coda) = (doma𝐺)}) ↔ (𝐺𝐴 ∧ (𝐹𝐴 ∧ (coda𝐹) = (doma𝐺))))
19 an12 644 . . . 4 ((𝐺𝐴 ∧ (𝐹𝐴 ∧ (coda𝐹) = (doma𝐺))) ↔ (𝐹𝐴 ∧ (𝐺𝐴 ∧ (coda𝐹) = (doma𝐺))))
20 3anass 1093 . . . 4 ((𝐹𝐴𝐺𝐴 ∧ (coda𝐹) = (doma𝐺)) ↔ (𝐹𝐴 ∧ (𝐺𝐴 ∧ (coda𝐹) = (doma𝐺))))
2119, 20bitr4i 278 . . 3 ((𝐺𝐴 ∧ (𝐹𝐴 ∧ (coda𝐹) = (doma𝐺))) ↔ (𝐹𝐴𝐺𝐴 ∧ (coda𝐹) = (doma𝐺)))
2215, 18, 213bitri 297 . 2 (⟨𝐺, 𝐹⟩ ∈ 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}) ↔ (𝐹𝐴𝐺𝐴 ∧ (coda𝐹) = (doma𝐺)))
231, 11, 223bitri 297 1 (𝐺dom · 𝐹 ↔ (𝐹𝐴𝐺𝐴 ∧ (coda𝐹) = (doma𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3058  {crab 3429  Vcvv 3471  {csn 4629  cop 4635  cotp 4637   ciun 4996   class class class wbr 5148   × cxp 5676  dom cdm 5678  wf 6544  cfv 6548  (class class class)co 7420  2nd c2nd 7992  compcco 17245  domacdoma 18009  codaccoda 18010  Arrowcarw 18011  compaccoa 18043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-ot 4638  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-arw 18016  df-coa 18045
This theorem is referenced by:  homdmcoa  18056  coapm  18060
  Copyright terms: Public domain W3C validator