MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmcoa Structured version   Visualization version   GIF version

Theorem eldmcoa 18027
Description: A pair 𝐺, 𝐹 is in the domain of the arrow composition, if the domain of 𝐺 equals the codomain of 𝐹. (In this case we say 𝐺 and 𝐹 are composable.) (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
coafval.o · = (compa𝐶)
coafval.a 𝐴 = (Arrow‘𝐶)
Assertion
Ref Expression
eldmcoa (𝐺dom · 𝐹 ↔ (𝐹𝐴𝐺𝐴 ∧ (coda𝐹) = (doma𝐺)))

Proof of Theorem eldmcoa
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5108 . 2 (𝐺dom · 𝐹 ↔ ⟨𝐺, 𝐹⟩ ∈ dom · )
2 otex 5425 . . . . . 6 ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝐶)(coda𝑔))(2nd𝑓))⟩ ∈ V
32rgen2w 3049 . . . . 5 𝑔𝐴𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)}⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝐶)(coda𝑔))(2nd𝑓))⟩ ∈ V
4 coafval.o . . . . . . 7 · = (compa𝐶)
5 coafval.a . . . . . . 7 𝐴 = (Arrow‘𝐶)
6 eqid 2729 . . . . . . 7 (comp‘𝐶) = (comp‘𝐶)
74, 5, 6coafval 18026 . . . . . 6 · = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝐶)(coda𝑔))(2nd𝑓))⟩)
87fmpox 8046 . . . . 5 (∀𝑔𝐴𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)}⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝐶)(coda𝑔))(2nd𝑓))⟩ ∈ V ↔ · : 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)})⟶V)
93, 8mpbi 230 . . . 4 · : 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)})⟶V
109fdmi 6699 . . 3 dom · = 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)})
1110eleq2i 2820 . 2 (⟨𝐺, 𝐹⟩ ∈ dom · ↔ ⟨𝐺, 𝐹⟩ ∈ 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}))
12 fveq2 6858 . . . . . 6 (𝑔 = 𝐺 → (doma𝑔) = (doma𝐺))
1312eqeq2d 2740 . . . . 5 (𝑔 = 𝐺 → ((coda) = (doma𝑔) ↔ (coda) = (doma𝐺)))
1413rabbidv 3413 . . . 4 (𝑔 = 𝐺 → {𝐴 ∣ (coda) = (doma𝑔)} = {𝐴 ∣ (coda) = (doma𝐺)})
1514opeliunxp2 5802 . . 3 (⟨𝐺, 𝐹⟩ ∈ 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}) ↔ (𝐺𝐴𝐹 ∈ {𝐴 ∣ (coda) = (doma𝐺)}))
16 fveqeq2 6867 . . . . 5 ( = 𝐹 → ((coda) = (doma𝐺) ↔ (coda𝐹) = (doma𝐺)))
1716elrab 3659 . . . 4 (𝐹 ∈ {𝐴 ∣ (coda) = (doma𝐺)} ↔ (𝐹𝐴 ∧ (coda𝐹) = (doma𝐺)))
1817anbi2i 623 . . 3 ((𝐺𝐴𝐹 ∈ {𝐴 ∣ (coda) = (doma𝐺)}) ↔ (𝐺𝐴 ∧ (𝐹𝐴 ∧ (coda𝐹) = (doma𝐺))))
19 an12 645 . . . 4 ((𝐺𝐴 ∧ (𝐹𝐴 ∧ (coda𝐹) = (doma𝐺))) ↔ (𝐹𝐴 ∧ (𝐺𝐴 ∧ (coda𝐹) = (doma𝐺))))
20 3anass 1094 . . . 4 ((𝐹𝐴𝐺𝐴 ∧ (coda𝐹) = (doma𝐺)) ↔ (𝐹𝐴 ∧ (𝐺𝐴 ∧ (coda𝐹) = (doma𝐺))))
2119, 20bitr4i 278 . . 3 ((𝐺𝐴 ∧ (𝐹𝐴 ∧ (coda𝐹) = (doma𝐺))) ↔ (𝐹𝐴𝐺𝐴 ∧ (coda𝐹) = (doma𝐺)))
2215, 18, 213bitri 297 . 2 (⟨𝐺, 𝐹⟩ ∈ 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}) ↔ (𝐹𝐴𝐺𝐴 ∧ (coda𝐹) = (doma𝐺)))
231, 11, 223bitri 297 1 (𝐺dom · 𝐹 ↔ (𝐹𝐴𝐺𝐴 ∧ (coda𝐹) = (doma𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  {csn 4589  cop 4595  cotp 4597   ciun 4955   class class class wbr 5107   × cxp 5636  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  2nd c2nd 7967  compcco 17232  domacdoma 17982  codaccoda 17983  Arrowcarw 17984  compaccoa 18016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-arw 17989  df-coa 18018
This theorem is referenced by:  homdmcoa  18029  coapm  18033
  Copyright terms: Public domain W3C validator