MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmcoa Structured version   Visualization version   GIF version

Theorem eldmcoa 18034
Description: A pair 𝐺, 𝐹 is in the domain of the arrow composition, if the domain of 𝐺 equals the codomain of 𝐹. (In this case we say 𝐺 and 𝐹 are composable.) (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
coafval.o · = (compa𝐶)
coafval.a 𝐴 = (Arrow‘𝐶)
Assertion
Ref Expression
eldmcoa (𝐺dom · 𝐹 ↔ (𝐹𝐴𝐺𝐴 ∧ (coda𝐹) = (doma𝐺)))

Proof of Theorem eldmcoa
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5111 . 2 (𝐺dom · 𝐹 ↔ ⟨𝐺, 𝐹⟩ ∈ dom · )
2 otex 5428 . . . . . 6 ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝐶)(coda𝑔))(2nd𝑓))⟩ ∈ V
32rgen2w 3050 . . . . 5 𝑔𝐴𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)}⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝐶)(coda𝑔))(2nd𝑓))⟩ ∈ V
4 coafval.o . . . . . . 7 · = (compa𝐶)
5 coafval.a . . . . . . 7 𝐴 = (Arrow‘𝐶)
6 eqid 2730 . . . . . . 7 (comp‘𝐶) = (comp‘𝐶)
74, 5, 6coafval 18033 . . . . . 6 · = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝐶)(coda𝑔))(2nd𝑓))⟩)
87fmpox 8049 . . . . 5 (∀𝑔𝐴𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)}⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝐶)(coda𝑔))(2nd𝑓))⟩ ∈ V ↔ · : 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)})⟶V)
93, 8mpbi 230 . . . 4 · : 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)})⟶V
109fdmi 6702 . . 3 dom · = 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)})
1110eleq2i 2821 . 2 (⟨𝐺, 𝐹⟩ ∈ dom · ↔ ⟨𝐺, 𝐹⟩ ∈ 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}))
12 fveq2 6861 . . . . . 6 (𝑔 = 𝐺 → (doma𝑔) = (doma𝐺))
1312eqeq2d 2741 . . . . 5 (𝑔 = 𝐺 → ((coda) = (doma𝑔) ↔ (coda) = (doma𝐺)))
1413rabbidv 3416 . . . 4 (𝑔 = 𝐺 → {𝐴 ∣ (coda) = (doma𝑔)} = {𝐴 ∣ (coda) = (doma𝐺)})
1514opeliunxp2 5805 . . 3 (⟨𝐺, 𝐹⟩ ∈ 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}) ↔ (𝐺𝐴𝐹 ∈ {𝐴 ∣ (coda) = (doma𝐺)}))
16 fveqeq2 6870 . . . . 5 ( = 𝐹 → ((coda) = (doma𝐺) ↔ (coda𝐹) = (doma𝐺)))
1716elrab 3662 . . . 4 (𝐹 ∈ {𝐴 ∣ (coda) = (doma𝐺)} ↔ (𝐹𝐴 ∧ (coda𝐹) = (doma𝐺)))
1817anbi2i 623 . . 3 ((𝐺𝐴𝐹 ∈ {𝐴 ∣ (coda) = (doma𝐺)}) ↔ (𝐺𝐴 ∧ (𝐹𝐴 ∧ (coda𝐹) = (doma𝐺))))
19 an12 645 . . . 4 ((𝐺𝐴 ∧ (𝐹𝐴 ∧ (coda𝐹) = (doma𝐺))) ↔ (𝐹𝐴 ∧ (𝐺𝐴 ∧ (coda𝐹) = (doma𝐺))))
20 3anass 1094 . . . 4 ((𝐹𝐴𝐺𝐴 ∧ (coda𝐹) = (doma𝐺)) ↔ (𝐹𝐴 ∧ (𝐺𝐴 ∧ (coda𝐹) = (doma𝐺))))
2119, 20bitr4i 278 . . 3 ((𝐺𝐴 ∧ (𝐹𝐴 ∧ (coda𝐹) = (doma𝐺))) ↔ (𝐹𝐴𝐺𝐴 ∧ (coda𝐹) = (doma𝐺)))
2215, 18, 213bitri 297 . 2 (⟨𝐺, 𝐹⟩ ∈ 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}) ↔ (𝐹𝐴𝐺𝐴 ∧ (coda𝐹) = (doma𝐺)))
231, 11, 223bitri 297 1 (𝐺dom · 𝐹 ↔ (𝐹𝐴𝐺𝐴 ∧ (coda𝐹) = (doma𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  {csn 4592  cop 4598  cotp 4600   ciun 4958   class class class wbr 5110   × cxp 5639  dom cdm 5641  wf 6510  cfv 6514  (class class class)co 7390  2nd c2nd 7970  compcco 17239  domacdoma 17989  codaccoda 17990  Arrowcarw 17991  compaccoa 18023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-ot 4601  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-arw 17996  df-coa 18025
This theorem is referenced by:  homdmcoa  18036  coapm  18040
  Copyright terms: Public domain W3C validator