Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  splcl Structured version   Visualization version   GIF version

Theorem splcl 14161
 Description: Closure of the substring replacement operator. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Proof shortened by AV, 15-Oct-2022.)
Assertion
Ref Expression
splcl ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) ∈ Word 𝐴)

Proof of Theorem splcl
Dummy variables 𝑠 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3428 . . . 4 (𝑆 ∈ Word 𝐴𝑆 ∈ V)
2 otex 5325 . . . 4 𝐹, 𝑇, 𝑅⟩ ∈ V
3 id 22 . . . . . . . 8 (𝑠 = 𝑆𝑠 = 𝑆)
4 2fveq3 6663 . . . . . . . 8 (𝑏 = ⟨𝐹, 𝑇, 𝑅⟩ → (1st ‘(1st𝑏)) = (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)))
53, 4oveqan12d 7169 . . . . . . 7 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (𝑠 prefix (1st ‘(1st𝑏))) = (𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))))
6 simpr 488 . . . . . . . 8 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → 𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)
76fveq2d 6662 . . . . . . 7 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (2nd𝑏) = (2nd ‘⟨𝐹, 𝑇, 𝑅⟩))
85, 7oveq12d 7168 . . . . . 6 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → ((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) = ((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)))
9 simpl 486 . . . . . . 7 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → 𝑠 = 𝑆)
106fveq2d 6662 . . . . . . . . 9 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (1st𝑏) = (1st ‘⟨𝐹, 𝑇, 𝑅⟩))
1110fveq2d 6662 . . . . . . . 8 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (2nd ‘(1st𝑏)) = (2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)))
129fveq2d 6662 . . . . . . . 8 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (♯‘𝑠) = (♯‘𝑆))
1311, 12opeq12d 4771 . . . . . . 7 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩ = ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)
149, 13oveq12d 7168 . . . . . 6 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩) = (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩))
158, 14oveq12d 7168 . . . . 5 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) ++ (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩)) = (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)))
16 df-splice 14159 . . . . 5 splice = (𝑠 ∈ V, 𝑏 ∈ V ↦ (((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) ++ (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩)))
17 ovex 7183 . . . . 5 (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)) ∈ V
1815, 16, 17ovmpoa 7300 . . . 4 ((𝑆 ∈ V ∧ ⟨𝐹, 𝑇, 𝑅⟩ ∈ V) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)))
191, 2, 18sylancl 589 . . 3 (𝑆 ∈ Word 𝐴 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)))
2019adantr 484 . 2 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)))
21 pfxcl 14086 . . . . 5 (𝑆 ∈ Word 𝐴 → (𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ∈ Word 𝐴)
2221adantr 484 . . . 4 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ∈ Word 𝐴)
23 ot3rdg 7709 . . . . . 6 (𝑅 ∈ Word 𝐴 → (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) = 𝑅)
2423adantl 485 . . . . 5 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) = 𝑅)
25 simpr 488 . . . . 5 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → 𝑅 ∈ Word 𝐴)
2624, 25eqeltrd 2852 . . . 4 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) ∈ Word 𝐴)
27 ccatcl 13973 . . . 4 (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ∈ Word 𝐴 ∧ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) ∈ Word 𝐴) → ((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ∈ Word 𝐴)
2822, 26, 27syl2anc 587 . . 3 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → ((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ∈ Word 𝐴)
29 swrdcl 14054 . . . 4 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩) ∈ Word 𝐴)
3029adantr 484 . . 3 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩) ∈ Word 𝐴)
31 ccatcl 13973 . . 3 ((((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ∈ Word 𝐴 ∧ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩) ∈ Word 𝐴) → (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)) ∈ Word 𝐴)
3228, 30, 31syl2anc 587 . 2 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)) ∈ Word 𝐴)
3320, 32eqeltrd 2852 1 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) ∈ Word 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  Vcvv 3409  ⟨cop 4528  ⟨cotp 4530  ‘cfv 6335  (class class class)co 7150  1st c1st 7691  2nd c2nd 7692  ♯chash 13740  Word cword 13913   ++ cconcat 13969   substr csubstr 14049   prefix cpfx 14079   splice csplice 14158 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-ot 4531  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-n0 11935  df-z 12021  df-uz 12283  df-fz 12940  df-fzo 13083  df-hash 13741  df-word 13914  df-concat 13970  df-substr 14050  df-pfx 14080  df-splice 14159 This theorem is referenced by:  psgnunilem2  18690  efglem  18909  efgtf  18915  frgpuplem  18965  cycpmco2lem4  30922  cycpmco2lem5  30923  cycpmco2lem6  30924  cycpmco2lem7  30925  cycpmco2  30926
 Copyright terms: Public domain W3C validator