Step | Hyp | Ref
| Expression |
1 | | elex 3428 |
. . . 4
⊢ (𝑆 ∈ Word 𝐴 → 𝑆 ∈ V) |
2 | | otex 5325 |
. . . 4
⊢
〈𝐹, 𝑇, 𝑅〉 ∈ V |
3 | | id 22 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → 𝑠 = 𝑆) |
4 | | 2fveq3 6663 |
. . . . . . . 8
⊢ (𝑏 = 〈𝐹, 𝑇, 𝑅〉 → (1st
‘(1st ‘𝑏)) = (1st ‘(1st
‘〈𝐹, 𝑇, 𝑅〉))) |
5 | 3, 4 | oveqan12d 7169 |
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉) → (𝑠 prefix (1st
‘(1st ‘𝑏))) = (𝑆 prefix (1st
‘(1st ‘〈𝐹, 𝑇, 𝑅〉)))) |
6 | | simpr 488 |
. . . . . . . 8
⊢ ((𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉) → 𝑏 = 〈𝐹, 𝑇, 𝑅〉) |
7 | 6 | fveq2d 6662 |
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉) → (2nd ‘𝑏) = (2nd
‘〈𝐹, 𝑇, 𝑅〉)) |
8 | 5, 7 | oveq12d 7168 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉) → ((𝑠 prefix (1st
‘(1st ‘𝑏))) ++ (2nd ‘𝑏)) = ((𝑆 prefix (1st
‘(1st ‘〈𝐹, 𝑇, 𝑅〉))) ++ (2nd
‘〈𝐹, 𝑇, 𝑅〉))) |
9 | | simpl 486 |
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉) → 𝑠 = 𝑆) |
10 | 6 | fveq2d 6662 |
. . . . . . . . 9
⊢ ((𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉) → (1st ‘𝑏) = (1st
‘〈𝐹, 𝑇, 𝑅〉)) |
11 | 10 | fveq2d 6662 |
. . . . . . . 8
⊢ ((𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉) → (2nd
‘(1st ‘𝑏)) = (2nd ‘(1st
‘〈𝐹, 𝑇, 𝑅〉))) |
12 | 9 | fveq2d 6662 |
. . . . . . . 8
⊢ ((𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉) → (♯‘𝑠) = (♯‘𝑆)) |
13 | 11, 12 | opeq12d 4771 |
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉) → 〈(2nd
‘(1st ‘𝑏)), (♯‘𝑠)〉 = 〈(2nd
‘(1st ‘〈𝐹, 𝑇, 𝑅〉)), (♯‘𝑆)〉) |
14 | 9, 13 | oveq12d 7168 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉) → (𝑠 substr 〈(2nd
‘(1st ‘𝑏)), (♯‘𝑠)〉) = (𝑆 substr 〈(2nd
‘(1st ‘〈𝐹, 𝑇, 𝑅〉)), (♯‘𝑆)〉)) |
15 | 8, 14 | oveq12d 7168 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉) → (((𝑠 prefix (1st
‘(1st ‘𝑏))) ++ (2nd ‘𝑏)) ++ (𝑠 substr 〈(2nd
‘(1st ‘𝑏)), (♯‘𝑠)〉)) = (((𝑆 prefix (1st
‘(1st ‘〈𝐹, 𝑇, 𝑅〉))) ++ (2nd
‘〈𝐹, 𝑇, 𝑅〉)) ++ (𝑆 substr 〈(2nd
‘(1st ‘〈𝐹, 𝑇, 𝑅〉)), (♯‘𝑆)〉))) |
16 | | df-splice 14159 |
. . . . 5
⊢ splice =
(𝑠 ∈ V, 𝑏 ∈ V ↦ (((𝑠 prefix (1st
‘(1st ‘𝑏))) ++ (2nd ‘𝑏)) ++ (𝑠 substr 〈(2nd
‘(1st ‘𝑏)), (♯‘𝑠)〉))) |
17 | | ovex 7183 |
. . . . 5
⊢ (((𝑆 prefix (1st
‘(1st ‘〈𝐹, 𝑇, 𝑅〉))) ++ (2nd
‘〈𝐹, 𝑇, 𝑅〉)) ++ (𝑆 substr 〈(2nd
‘(1st ‘〈𝐹, 𝑇, 𝑅〉)), (♯‘𝑆)〉)) ∈ V |
18 | 15, 16, 17 | ovmpoa 7300 |
. . . 4
⊢ ((𝑆 ∈ V ∧ 〈𝐹, 𝑇, 𝑅〉 ∈ V) → (𝑆 splice 〈𝐹, 𝑇, 𝑅〉) = (((𝑆 prefix (1st
‘(1st ‘〈𝐹, 𝑇, 𝑅〉))) ++ (2nd
‘〈𝐹, 𝑇, 𝑅〉)) ++ (𝑆 substr 〈(2nd
‘(1st ‘〈𝐹, 𝑇, 𝑅〉)), (♯‘𝑆)〉))) |
19 | 1, 2, 18 | sylancl 589 |
. . 3
⊢ (𝑆 ∈ Word 𝐴 → (𝑆 splice 〈𝐹, 𝑇, 𝑅〉) = (((𝑆 prefix (1st
‘(1st ‘〈𝐹, 𝑇, 𝑅〉))) ++ (2nd
‘〈𝐹, 𝑇, 𝑅〉)) ++ (𝑆 substr 〈(2nd
‘(1st ‘〈𝐹, 𝑇, 𝑅〉)), (♯‘𝑆)〉))) |
20 | 19 | adantr 484 |
. 2
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴) → (𝑆 splice 〈𝐹, 𝑇, 𝑅〉) = (((𝑆 prefix (1st
‘(1st ‘〈𝐹, 𝑇, 𝑅〉))) ++ (2nd
‘〈𝐹, 𝑇, 𝑅〉)) ++ (𝑆 substr 〈(2nd
‘(1st ‘〈𝐹, 𝑇, 𝑅〉)), (♯‘𝑆)〉))) |
21 | | pfxcl 14086 |
. . . . 5
⊢ (𝑆 ∈ Word 𝐴 → (𝑆 prefix (1st
‘(1st ‘〈𝐹, 𝑇, 𝑅〉))) ∈ Word 𝐴) |
22 | 21 | adantr 484 |
. . . 4
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴) → (𝑆 prefix (1st
‘(1st ‘〈𝐹, 𝑇, 𝑅〉))) ∈ Word 𝐴) |
23 | | ot3rdg 7709 |
. . . . . 6
⊢ (𝑅 ∈ Word 𝐴 → (2nd ‘〈𝐹, 𝑇, 𝑅〉) = 𝑅) |
24 | 23 | adantl 485 |
. . . . 5
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴) → (2nd ‘〈𝐹, 𝑇, 𝑅〉) = 𝑅) |
25 | | simpr 488 |
. . . . 5
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴) → 𝑅 ∈ Word 𝐴) |
26 | 24, 25 | eqeltrd 2852 |
. . . 4
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴) → (2nd ‘〈𝐹, 𝑇, 𝑅〉) ∈ Word 𝐴) |
27 | | ccatcl 13973 |
. . . 4
⊢ (((𝑆 prefix (1st
‘(1st ‘〈𝐹, 𝑇, 𝑅〉))) ∈ Word 𝐴 ∧ (2nd ‘〈𝐹, 𝑇, 𝑅〉) ∈ Word 𝐴) → ((𝑆 prefix (1st
‘(1st ‘〈𝐹, 𝑇, 𝑅〉))) ++ (2nd
‘〈𝐹, 𝑇, 𝑅〉)) ∈ Word 𝐴) |
28 | 22, 26, 27 | syl2anc 587 |
. . 3
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴) → ((𝑆 prefix (1st
‘(1st ‘〈𝐹, 𝑇, 𝑅〉))) ++ (2nd
‘〈𝐹, 𝑇, 𝑅〉)) ∈ Word 𝐴) |
29 | | swrdcl 14054 |
. . . 4
⊢ (𝑆 ∈ Word 𝐴 → (𝑆 substr 〈(2nd
‘(1st ‘〈𝐹, 𝑇, 𝑅〉)), (♯‘𝑆)〉) ∈ Word 𝐴) |
30 | 29 | adantr 484 |
. . 3
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴) → (𝑆 substr 〈(2nd
‘(1st ‘〈𝐹, 𝑇, 𝑅〉)), (♯‘𝑆)〉) ∈ Word 𝐴) |
31 | | ccatcl 13973 |
. . 3
⊢ ((((𝑆 prefix (1st
‘(1st ‘〈𝐹, 𝑇, 𝑅〉))) ++ (2nd
‘〈𝐹, 𝑇, 𝑅〉)) ∈ Word 𝐴 ∧ (𝑆 substr 〈(2nd
‘(1st ‘〈𝐹, 𝑇, 𝑅〉)), (♯‘𝑆)〉) ∈ Word 𝐴) → (((𝑆 prefix (1st
‘(1st ‘〈𝐹, 𝑇, 𝑅〉))) ++ (2nd
‘〈𝐹, 𝑇, 𝑅〉)) ++ (𝑆 substr 〈(2nd
‘(1st ‘〈𝐹, 𝑇, 𝑅〉)), (♯‘𝑆)〉)) ∈ Word 𝐴) |
32 | 28, 30, 31 | syl2anc 587 |
. 2
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴) → (((𝑆 prefix (1st
‘(1st ‘〈𝐹, 𝑇, 𝑅〉))) ++ (2nd
‘〈𝐹, 𝑇, 𝑅〉)) ++ (𝑆 substr 〈(2nd
‘(1st ‘〈𝐹, 𝑇, 𝑅〉)), (♯‘𝑆)〉)) ∈ Word 𝐴) |
33 | 20, 32 | eqeltrd 2852 |
1
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴) → (𝑆 splice 〈𝐹, 𝑇, 𝑅〉) ∈ Word 𝐴) |