MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  splcl Structured version   Visualization version   GIF version

Theorem splcl 14702
Description: Closure of the substring replacement operator. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Proof shortened by AV, 15-Oct-2022.)
Assertion
Ref Expression
splcl ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) ∈ Word 𝐴)

Proof of Theorem splcl
Dummy variables 𝑠 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3493 . . . 4 (𝑆 ∈ Word 𝐴𝑆 ∈ V)
2 otex 5466 . . . 4 𝐹, 𝑇, 𝑅⟩ ∈ V
3 id 22 . . . . . . . 8 (𝑠 = 𝑆𝑠 = 𝑆)
4 2fveq3 6897 . . . . . . . 8 (𝑏 = ⟨𝐹, 𝑇, 𝑅⟩ → (1st ‘(1st𝑏)) = (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)))
53, 4oveqan12d 7428 . . . . . . 7 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (𝑠 prefix (1st ‘(1st𝑏))) = (𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))))
6 simpr 486 . . . . . . . 8 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → 𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)
76fveq2d 6896 . . . . . . 7 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (2nd𝑏) = (2nd ‘⟨𝐹, 𝑇, 𝑅⟩))
85, 7oveq12d 7427 . . . . . 6 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → ((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) = ((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)))
9 simpl 484 . . . . . . 7 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → 𝑠 = 𝑆)
106fveq2d 6896 . . . . . . . . 9 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (1st𝑏) = (1st ‘⟨𝐹, 𝑇, 𝑅⟩))
1110fveq2d 6896 . . . . . . . 8 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (2nd ‘(1st𝑏)) = (2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)))
129fveq2d 6896 . . . . . . . 8 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (♯‘𝑠) = (♯‘𝑆))
1311, 12opeq12d 4882 . . . . . . 7 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩ = ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)
149, 13oveq12d 7427 . . . . . 6 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩) = (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩))
158, 14oveq12d 7427 . . . . 5 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) ++ (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩)) = (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)))
16 df-splice 14700 . . . . 5 splice = (𝑠 ∈ V, 𝑏 ∈ V ↦ (((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) ++ (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩)))
17 ovex 7442 . . . . 5 (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)) ∈ V
1815, 16, 17ovmpoa 7563 . . . 4 ((𝑆 ∈ V ∧ ⟨𝐹, 𝑇, 𝑅⟩ ∈ V) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)))
191, 2, 18sylancl 587 . . 3 (𝑆 ∈ Word 𝐴 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)))
2019adantr 482 . 2 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)))
21 pfxcl 14627 . . . . 5 (𝑆 ∈ Word 𝐴 → (𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ∈ Word 𝐴)
2221adantr 482 . . . 4 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ∈ Word 𝐴)
23 ot3rdg 7991 . . . . . 6 (𝑅 ∈ Word 𝐴 → (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) = 𝑅)
2423adantl 483 . . . . 5 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) = 𝑅)
25 simpr 486 . . . . 5 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → 𝑅 ∈ Word 𝐴)
2624, 25eqeltrd 2834 . . . 4 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) ∈ Word 𝐴)
27 ccatcl 14524 . . . 4 (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ∈ Word 𝐴 ∧ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) ∈ Word 𝐴) → ((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ∈ Word 𝐴)
2822, 26, 27syl2anc 585 . . 3 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → ((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ∈ Word 𝐴)
29 swrdcl 14595 . . . 4 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩) ∈ Word 𝐴)
3029adantr 482 . . 3 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩) ∈ Word 𝐴)
31 ccatcl 14524 . . 3 ((((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ∈ Word 𝐴 ∧ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩) ∈ Word 𝐴) → (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)) ∈ Word 𝐴)
3228, 30, 31syl2anc 585 . 2 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)) ∈ Word 𝐴)
3320, 32eqeltrd 2834 1 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) ∈ Word 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  cop 4635  cotp 4637  cfv 6544  (class class class)co 7409  1st c1st 7973  2nd c2nd 7974  chash 14290  Word cword 14464   ++ cconcat 14520   substr csubstr 14590   prefix cpfx 14620   splice csplice 14699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-ot 4638  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-concat 14521  df-substr 14591  df-pfx 14621  df-splice 14700
This theorem is referenced by:  psgnunilem2  19363  efglem  19584  efgtf  19590  frgpuplem  19640  cycpmco2lem4  32288  cycpmco2lem5  32289  cycpmco2lem6  32290  cycpmco2lem7  32291  cycpmco2  32292
  Copyright terms: Public domain W3C validator