MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  splcl Structured version   Visualization version   GIF version

Theorem splcl 14775
Description: Closure of the substring replacement operator. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Proof shortened by AV, 15-Oct-2022.)
Assertion
Ref Expression
splcl ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) ∈ Word 𝐴)

Proof of Theorem splcl
Dummy variables 𝑠 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3485 . . . 4 (𝑆 ∈ Word 𝐴𝑆 ∈ V)
2 otex 5445 . . . 4 𝐹, 𝑇, 𝑅⟩ ∈ V
3 id 22 . . . . . . . 8 (𝑠 = 𝑆𝑠 = 𝑆)
4 2fveq3 6886 . . . . . . . 8 (𝑏 = ⟨𝐹, 𝑇, 𝑅⟩ → (1st ‘(1st𝑏)) = (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)))
53, 4oveqan12d 7429 . . . . . . 7 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (𝑠 prefix (1st ‘(1st𝑏))) = (𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))))
6 simpr 484 . . . . . . . 8 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → 𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)
76fveq2d 6885 . . . . . . 7 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (2nd𝑏) = (2nd ‘⟨𝐹, 𝑇, 𝑅⟩))
85, 7oveq12d 7428 . . . . . 6 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → ((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) = ((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)))
9 simpl 482 . . . . . . 7 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → 𝑠 = 𝑆)
106fveq2d 6885 . . . . . . . . 9 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (1st𝑏) = (1st ‘⟨𝐹, 𝑇, 𝑅⟩))
1110fveq2d 6885 . . . . . . . 8 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (2nd ‘(1st𝑏)) = (2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)))
129fveq2d 6885 . . . . . . . 8 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (♯‘𝑠) = (♯‘𝑆))
1311, 12opeq12d 4862 . . . . . . 7 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩ = ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)
149, 13oveq12d 7428 . . . . . 6 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩) = (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩))
158, 14oveq12d 7428 . . . . 5 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) ++ (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩)) = (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)))
16 df-splice 14773 . . . . 5 splice = (𝑠 ∈ V, 𝑏 ∈ V ↦ (((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) ++ (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩)))
17 ovex 7443 . . . . 5 (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)) ∈ V
1815, 16, 17ovmpoa 7567 . . . 4 ((𝑆 ∈ V ∧ ⟨𝐹, 𝑇, 𝑅⟩ ∈ V) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)))
191, 2, 18sylancl 586 . . 3 (𝑆 ∈ Word 𝐴 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)))
2019adantr 480 . 2 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)))
21 pfxcl 14700 . . . . 5 (𝑆 ∈ Word 𝐴 → (𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ∈ Word 𝐴)
2221adantr 480 . . . 4 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ∈ Word 𝐴)
23 ot3rdg 8009 . . . . . 6 (𝑅 ∈ Word 𝐴 → (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) = 𝑅)
2423adantl 481 . . . . 5 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) = 𝑅)
25 simpr 484 . . . . 5 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → 𝑅 ∈ Word 𝐴)
2624, 25eqeltrd 2835 . . . 4 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) ∈ Word 𝐴)
27 ccatcl 14597 . . . 4 (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ∈ Word 𝐴 ∧ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) ∈ Word 𝐴) → ((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ∈ Word 𝐴)
2822, 26, 27syl2anc 584 . . 3 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → ((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ∈ Word 𝐴)
29 swrdcl 14668 . . . 4 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩) ∈ Word 𝐴)
3029adantr 480 . . 3 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩) ∈ Word 𝐴)
31 ccatcl 14597 . . 3 ((((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ∈ Word 𝐴 ∧ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩) ∈ Word 𝐴) → (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)) ∈ Word 𝐴)
3228, 30, 31syl2anc 584 . 2 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)) ∈ Word 𝐴)
3320, 32eqeltrd 2835 1 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) ∈ Word 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  cop 4612  cotp 4614  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  chash 14353  Word cword 14536   ++ cconcat 14593   substr csubstr 14663   prefix cpfx 14693   splice csplice 14772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-concat 14594  df-substr 14664  df-pfx 14694  df-splice 14773
This theorem is referenced by:  psgnunilem2  19481  efglem  19702  efgtf  19708  frgpuplem  19758  cycpmco2lem4  33145  cycpmco2lem5  33146  cycpmco2lem6  33147  cycpmco2lem7  33148  cycpmco2  33149
  Copyright terms: Public domain W3C validator