MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  splcl Structured version   Visualization version   GIF version

Theorem splcl 14717
Description: Closure of the substring replacement operator. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Proof shortened by AV, 15-Oct-2022.)
Assertion
Ref Expression
splcl ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) ∈ Word 𝐴)

Proof of Theorem splcl
Dummy variables 𝑠 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3468 . . . 4 (𝑆 ∈ Word 𝐴𝑆 ∈ V)
2 otex 5425 . . . 4 𝐹, 𝑇, 𝑅⟩ ∈ V
3 id 22 . . . . . . . 8 (𝑠 = 𝑆𝑠 = 𝑆)
4 2fveq3 6863 . . . . . . . 8 (𝑏 = ⟨𝐹, 𝑇, 𝑅⟩ → (1st ‘(1st𝑏)) = (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)))
53, 4oveqan12d 7406 . . . . . . 7 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (𝑠 prefix (1st ‘(1st𝑏))) = (𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))))
6 simpr 484 . . . . . . . 8 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → 𝑏 = ⟨𝐹, 𝑇, 𝑅⟩)
76fveq2d 6862 . . . . . . 7 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (2nd𝑏) = (2nd ‘⟨𝐹, 𝑇, 𝑅⟩))
85, 7oveq12d 7405 . . . . . 6 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → ((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) = ((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)))
9 simpl 482 . . . . . . 7 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → 𝑠 = 𝑆)
106fveq2d 6862 . . . . . . . . 9 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (1st𝑏) = (1st ‘⟨𝐹, 𝑇, 𝑅⟩))
1110fveq2d 6862 . . . . . . . 8 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (2nd ‘(1st𝑏)) = (2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)))
129fveq2d 6862 . . . . . . . 8 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (♯‘𝑠) = (♯‘𝑆))
1311, 12opeq12d 4845 . . . . . . 7 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩ = ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)
149, 13oveq12d 7405 . . . . . 6 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩) = (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩))
158, 14oveq12d 7405 . . . . 5 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝑇, 𝑅⟩) → (((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) ++ (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩)) = (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)))
16 df-splice 14715 . . . . 5 splice = (𝑠 ∈ V, 𝑏 ∈ V ↦ (((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) ++ (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩)))
17 ovex 7420 . . . . 5 (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)) ∈ V
1815, 16, 17ovmpoa 7544 . . . 4 ((𝑆 ∈ V ∧ ⟨𝐹, 𝑇, 𝑅⟩ ∈ V) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)))
191, 2, 18sylancl 586 . . 3 (𝑆 ∈ Word 𝐴 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)))
2019adantr 480 . 2 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)))
21 pfxcl 14642 . . . . 5 (𝑆 ∈ Word 𝐴 → (𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ∈ Word 𝐴)
2221adantr 480 . . . 4 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ∈ Word 𝐴)
23 ot3rdg 7984 . . . . . 6 (𝑅 ∈ Word 𝐴 → (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) = 𝑅)
2423adantl 481 . . . . 5 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) = 𝑅)
25 simpr 484 . . . . 5 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → 𝑅 ∈ Word 𝐴)
2624, 25eqeltrd 2828 . . . 4 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) ∈ Word 𝐴)
27 ccatcl 14539 . . . 4 (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ∈ Word 𝐴 ∧ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩) ∈ Word 𝐴) → ((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ∈ Word 𝐴)
2822, 26, 27syl2anc 584 . . 3 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → ((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ∈ Word 𝐴)
29 swrdcl 14610 . . . 4 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩) ∈ Word 𝐴)
3029adantr 480 . . 3 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩) ∈ Word 𝐴)
31 ccatcl 14539 . . 3 ((((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ∈ Word 𝐴 ∧ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩) ∈ Word 𝐴) → (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)) ∈ Word 𝐴)
3228, 30, 31syl2anc 584 . 2 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (((𝑆 prefix (1st ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩))) ++ (2nd ‘⟨𝐹, 𝑇, 𝑅⟩)) ++ (𝑆 substr ⟨(2nd ‘(1st ‘⟨𝐹, 𝑇, 𝑅⟩)), (♯‘𝑆)⟩)) ∈ Word 𝐴)
3320, 32eqeltrd 2828 1 ((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) ∈ Word 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cop 4595  cotp 4597  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  chash 14295  Word cword 14478   ++ cconcat 14535   substr csubstr 14605   prefix cpfx 14635   splice csplice 14714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-concat 14536  df-substr 14606  df-pfx 14636  df-splice 14715
This theorem is referenced by:  psgnunilem2  19425  efglem  19646  efgtf  19652  frgpuplem  19702  cycpmco2lem4  33086  cycpmco2lem5  33087  cycpmco2lem6  33088  cycpmco2lem7  33089  cycpmco2  33090
  Copyright terms: Public domain W3C validator