Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrf Structured version   Visualization version   GIF version

Theorem msrf 35519
Description: The reduct of a pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mpstssv.p 𝑃 = (mPreSt‘𝑇)
msrf.r 𝑅 = (mStRed‘𝑇)
Assertion
Ref Expression
msrf 𝑅:𝑃𝑃

Proof of Theorem msrf
Dummy variables 𝑎 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 otex 5408 . . . . 5 ⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑇) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ ∈ V
21csbex 5250 . . . 4 (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑇) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ ∈ V
32csbex 5250 . . 3 (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑇) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ ∈ V
4 eqid 2729 . . . 4 (mVars‘𝑇) = (mVars‘𝑇)
5 mpstssv.p . . . 4 𝑃 = (mPreSt‘𝑇)
6 msrf.r . . . 4 𝑅 = (mStRed‘𝑇)
74, 5, 6msrfval 35514 . . 3 𝑅 = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑇) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
83, 7fnmpti 6625 . 2 𝑅 Fn 𝑃
95mpst123 35517 . . . . . 6 (𝑠𝑃𝑠 = ⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
109fveq2d 6826 . . . . 5 (𝑠𝑃 → (𝑅𝑠) = (𝑅‘⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩))
11 id 22 . . . . . . 7 (𝑠𝑃𝑠𝑃)
129, 11eqeltrrd 2829 . . . . . 6 (𝑠𝑃 → ⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ 𝑃)
13 eqid 2729 . . . . . . 7 ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) = ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))
144, 5, 6, 13msrval 35515 . . . . . 6 (⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ 𝑃 → (𝑅‘⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
1512, 14syl 17 . . . . 5 (𝑠𝑃 → (𝑅‘⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
1610, 15eqtrd 2764 . . . 4 (𝑠𝑃 → (𝑅𝑠) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
17 inss1 4188 . . . . . . 7 ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ⊆ (1st ‘(1st𝑠))
18 eqid 2729 . . . . . . . . . . 11 (mDV‘𝑇) = (mDV‘𝑇)
19 eqid 2729 . . . . . . . . . . 11 (mEx‘𝑇) = (mEx‘𝑇)
2018, 19, 5elmpst 35513 . . . . . . . . . 10 (⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ 𝑃 ↔ (((1st ‘(1st𝑠)) ⊆ (mDV‘𝑇) ∧ (1st ‘(1st𝑠)) = (1st ‘(1st𝑠))) ∧ ((2nd ‘(1st𝑠)) ⊆ (mEx‘𝑇) ∧ (2nd ‘(1st𝑠)) ∈ Fin) ∧ (2nd𝑠) ∈ (mEx‘𝑇)))
2112, 20sylib 218 . . . . . . . . 9 (𝑠𝑃 → (((1st ‘(1st𝑠)) ⊆ (mDV‘𝑇) ∧ (1st ‘(1st𝑠)) = (1st ‘(1st𝑠))) ∧ ((2nd ‘(1st𝑠)) ⊆ (mEx‘𝑇) ∧ (2nd ‘(1st𝑠)) ∈ Fin) ∧ (2nd𝑠) ∈ (mEx‘𝑇)))
2221simp1d 1142 . . . . . . . 8 (𝑠𝑃 → ((1st ‘(1st𝑠)) ⊆ (mDV‘𝑇) ∧ (1st ‘(1st𝑠)) = (1st ‘(1st𝑠))))
2322simpld 494 . . . . . . 7 (𝑠𝑃 → (1st ‘(1st𝑠)) ⊆ (mDV‘𝑇))
2417, 23sstrid 3947 . . . . . 6 (𝑠𝑃 → ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ⊆ (mDV‘𝑇))
25 cnvin 6093 . . . . . . 7 ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))
2622simprd 495 . . . . . . . 8 (𝑠𝑃(1st ‘(1st𝑠)) = (1st ‘(1st𝑠)))
27 cnvxp 6106 . . . . . . . . 9 ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))) = ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))
2827a1i 11 . . . . . . . 8 (𝑠𝑃( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))) = ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))
2926, 28ineq12d 4172 . . . . . . 7 (𝑠𝑃 → ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))))
3025, 29eqtrid 2776 . . . . . 6 (𝑠𝑃((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))))
3124, 30jca 511 . . . . 5 (𝑠𝑃 → (((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ⊆ (mDV‘𝑇) ∧ ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))))
3221simp2d 1143 . . . . 5 (𝑠𝑃 → ((2nd ‘(1st𝑠)) ⊆ (mEx‘𝑇) ∧ (2nd ‘(1st𝑠)) ∈ Fin))
3321simp3d 1144 . . . . 5 (𝑠𝑃 → (2nd𝑠) ∈ (mEx‘𝑇))
3418, 19, 5elmpst 35513 . . . . 5 (⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ 𝑃 ↔ ((((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ⊆ (mDV‘𝑇) ∧ ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))) ∧ ((2nd ‘(1st𝑠)) ⊆ (mEx‘𝑇) ∧ (2nd ‘(1st𝑠)) ∈ Fin) ∧ (2nd𝑠) ∈ (mEx‘𝑇)))
3531, 32, 33, 34syl3anbrc 1344 . . . 4 (𝑠𝑃 → ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ 𝑃)
3616, 35eqeltrd 2828 . . 3 (𝑠𝑃 → (𝑅𝑠) ∈ 𝑃)
3736rgen 3046 . 2 𝑠𝑃 (𝑅𝑠) ∈ 𝑃
38 ffnfv 7053 . 2 (𝑅:𝑃𝑃 ↔ (𝑅 Fn 𝑃 ∧ ∀𝑠𝑃 (𝑅𝑠) ∈ 𝑃))
398, 37, 38mpbir2an 711 1 𝑅:𝑃𝑃
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  csb 3851  cun 3901  cin 3902  wss 3903  {csn 4577  cotp 4585   cuni 4858   × cxp 5617  ccnv 5618  cima 5622   Fn wfn 6477  wf 6478  cfv 6482  1st c1st 7922  2nd c2nd 7923  Fincfn 8872  mExcmex 35444  mDVcmdv 35445  mVarscmvrs 35446  mPreStcmpst 35450  mStRedcmsr 35451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-ot 4586  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-1st 7924  df-2nd 7925  df-mpst 35470  df-msr 35471
This theorem is referenced by:  msrrcl  35520  msrid  35522  msrfo  35523  mstapst  35524  elmsta  35525  elmthm  35553  mthmsta  35555  mthmblem  35557
  Copyright terms: Public domain W3C validator