Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrf Structured version   Visualization version   GIF version

Theorem msrf 34136
Description: The reduct of a pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mpstssv.p 𝑃 = (mPreSt‘𝑇)
msrf.r 𝑅 = (mStRed‘𝑇)
Assertion
Ref Expression
msrf 𝑅:𝑃𝑃

Proof of Theorem msrf
Dummy variables 𝑎 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 otex 5422 . . . . 5 ⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑇) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ ∈ V
21csbex 5268 . . . 4 (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑇) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ ∈ V
32csbex 5268 . . 3 (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑇) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ ∈ V
4 eqid 2736 . . . 4 (mVars‘𝑇) = (mVars‘𝑇)
5 mpstssv.p . . . 4 𝑃 = (mPreSt‘𝑇)
6 msrf.r . . . 4 𝑅 = (mStRed‘𝑇)
74, 5, 6msrfval 34131 . . 3 𝑅 = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑇) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
83, 7fnmpti 6644 . 2 𝑅 Fn 𝑃
95mpst123 34134 . . . . . 6 (𝑠𝑃𝑠 = ⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
109fveq2d 6846 . . . . 5 (𝑠𝑃 → (𝑅𝑠) = (𝑅‘⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩))
11 id 22 . . . . . . 7 (𝑠𝑃𝑠𝑃)
129, 11eqeltrrd 2839 . . . . . 6 (𝑠𝑃 → ⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ 𝑃)
13 eqid 2736 . . . . . . 7 ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) = ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))
144, 5, 6, 13msrval 34132 . . . . . 6 (⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ 𝑃 → (𝑅‘⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
1512, 14syl 17 . . . . 5 (𝑠𝑃 → (𝑅‘⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
1610, 15eqtrd 2776 . . . 4 (𝑠𝑃 → (𝑅𝑠) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
17 inss1 4188 . . . . . . 7 ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ⊆ (1st ‘(1st𝑠))
18 eqid 2736 . . . . . . . . . . 11 (mDV‘𝑇) = (mDV‘𝑇)
19 eqid 2736 . . . . . . . . . . 11 (mEx‘𝑇) = (mEx‘𝑇)
2018, 19, 5elmpst 34130 . . . . . . . . . 10 (⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ 𝑃 ↔ (((1st ‘(1st𝑠)) ⊆ (mDV‘𝑇) ∧ (1st ‘(1st𝑠)) = (1st ‘(1st𝑠))) ∧ ((2nd ‘(1st𝑠)) ⊆ (mEx‘𝑇) ∧ (2nd ‘(1st𝑠)) ∈ Fin) ∧ (2nd𝑠) ∈ (mEx‘𝑇)))
2112, 20sylib 217 . . . . . . . . 9 (𝑠𝑃 → (((1st ‘(1st𝑠)) ⊆ (mDV‘𝑇) ∧ (1st ‘(1st𝑠)) = (1st ‘(1st𝑠))) ∧ ((2nd ‘(1st𝑠)) ⊆ (mEx‘𝑇) ∧ (2nd ‘(1st𝑠)) ∈ Fin) ∧ (2nd𝑠) ∈ (mEx‘𝑇)))
2221simp1d 1142 . . . . . . . 8 (𝑠𝑃 → ((1st ‘(1st𝑠)) ⊆ (mDV‘𝑇) ∧ (1st ‘(1st𝑠)) = (1st ‘(1st𝑠))))
2322simpld 495 . . . . . . 7 (𝑠𝑃 → (1st ‘(1st𝑠)) ⊆ (mDV‘𝑇))
2417, 23sstrid 3955 . . . . . 6 (𝑠𝑃 → ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ⊆ (mDV‘𝑇))
25 cnvin 6097 . . . . . . 7 ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))
2622simprd 496 . . . . . . . 8 (𝑠𝑃(1st ‘(1st𝑠)) = (1st ‘(1st𝑠)))
27 cnvxp 6109 . . . . . . . . 9 ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))) = ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))
2827a1i 11 . . . . . . . 8 (𝑠𝑃( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))) = ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))
2926, 28ineq12d 4173 . . . . . . 7 (𝑠𝑃 → ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))))
3025, 29eqtrid 2788 . . . . . 6 (𝑠𝑃((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))))
3124, 30jca 512 . . . . 5 (𝑠𝑃 → (((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ⊆ (mDV‘𝑇) ∧ ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))))
3221simp2d 1143 . . . . 5 (𝑠𝑃 → ((2nd ‘(1st𝑠)) ⊆ (mEx‘𝑇) ∧ (2nd ‘(1st𝑠)) ∈ Fin))
3321simp3d 1144 . . . . 5 (𝑠𝑃 → (2nd𝑠) ∈ (mEx‘𝑇))
3418, 19, 5elmpst 34130 . . . . 5 (⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ 𝑃 ↔ ((((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ⊆ (mDV‘𝑇) ∧ ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))) ∧ ((2nd ‘(1st𝑠)) ⊆ (mEx‘𝑇) ∧ (2nd ‘(1st𝑠)) ∈ Fin) ∧ (2nd𝑠) ∈ (mEx‘𝑇)))
3531, 32, 33, 34syl3anbrc 1343 . . . 4 (𝑠𝑃 → ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ 𝑃)
3616, 35eqeltrd 2838 . . 3 (𝑠𝑃 → (𝑅𝑠) ∈ 𝑃)
3736rgen 3066 . 2 𝑠𝑃 (𝑅𝑠) ∈ 𝑃
38 ffnfv 7066 . 2 (𝑅:𝑃𝑃 ↔ (𝑅 Fn 𝑃 ∧ ∀𝑠𝑃 (𝑅𝑠) ∈ 𝑃))
398, 37, 38mpbir2an 709 1 𝑅:𝑃𝑃
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  csb 3855  cun 3908  cin 3909  wss 3910  {csn 4586  cotp 4594   cuni 4865   × cxp 5631  ccnv 5632  cima 5636   Fn wfn 6491  wf 6492  cfv 6496  1st c1st 7919  2nd c2nd 7920  Fincfn 8883  mExcmex 34061  mDVcmdv 34062  mVarscmvrs 34063  mPreStcmpst 34067  mStRedcmsr 34068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-ot 4595  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-1st 7921  df-2nd 7922  df-mpst 34087  df-msr 34088
This theorem is referenced by:  msrrcl  34137  msrid  34139  msrfo  34140  mstapst  34141  elmsta  34142  elmthm  34170  mthmsta  34172  mthmblem  34174
  Copyright terms: Public domain W3C validator