Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrf Structured version   Visualization version   GIF version

Theorem msrf 35502
Description: The reduct of a pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mpstssv.p 𝑃 = (mPreSt‘𝑇)
msrf.r 𝑅 = (mStRed‘𝑇)
Assertion
Ref Expression
msrf 𝑅:𝑃𝑃

Proof of Theorem msrf
Dummy variables 𝑎 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 otex 5420 . . . . 5 ⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑇) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ ∈ V
21csbex 5261 . . . 4 (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑇) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ ∈ V
32csbex 5261 . . 3 (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑇) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ ∈ V
4 eqid 2729 . . . 4 (mVars‘𝑇) = (mVars‘𝑇)
5 mpstssv.p . . . 4 𝑃 = (mPreSt‘𝑇)
6 msrf.r . . . 4 𝑅 = (mStRed‘𝑇)
74, 5, 6msrfval 35497 . . 3 𝑅 = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑇) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
83, 7fnmpti 6643 . 2 𝑅 Fn 𝑃
95mpst123 35500 . . . . . 6 (𝑠𝑃𝑠 = ⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
109fveq2d 6844 . . . . 5 (𝑠𝑃 → (𝑅𝑠) = (𝑅‘⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩))
11 id 22 . . . . . . 7 (𝑠𝑃𝑠𝑃)
129, 11eqeltrrd 2829 . . . . . 6 (𝑠𝑃 → ⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ 𝑃)
13 eqid 2729 . . . . . . 7 ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) = ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))
144, 5, 6, 13msrval 35498 . . . . . 6 (⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ 𝑃 → (𝑅‘⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
1512, 14syl 17 . . . . 5 (𝑠𝑃 → (𝑅‘⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
1610, 15eqtrd 2764 . . . 4 (𝑠𝑃 → (𝑅𝑠) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
17 inss1 4196 . . . . . . 7 ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ⊆ (1st ‘(1st𝑠))
18 eqid 2729 . . . . . . . . . . 11 (mDV‘𝑇) = (mDV‘𝑇)
19 eqid 2729 . . . . . . . . . . 11 (mEx‘𝑇) = (mEx‘𝑇)
2018, 19, 5elmpst 35496 . . . . . . . . . 10 (⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ 𝑃 ↔ (((1st ‘(1st𝑠)) ⊆ (mDV‘𝑇) ∧ (1st ‘(1st𝑠)) = (1st ‘(1st𝑠))) ∧ ((2nd ‘(1st𝑠)) ⊆ (mEx‘𝑇) ∧ (2nd ‘(1st𝑠)) ∈ Fin) ∧ (2nd𝑠) ∈ (mEx‘𝑇)))
2112, 20sylib 218 . . . . . . . . 9 (𝑠𝑃 → (((1st ‘(1st𝑠)) ⊆ (mDV‘𝑇) ∧ (1st ‘(1st𝑠)) = (1st ‘(1st𝑠))) ∧ ((2nd ‘(1st𝑠)) ⊆ (mEx‘𝑇) ∧ (2nd ‘(1st𝑠)) ∈ Fin) ∧ (2nd𝑠) ∈ (mEx‘𝑇)))
2221simp1d 1142 . . . . . . . 8 (𝑠𝑃 → ((1st ‘(1st𝑠)) ⊆ (mDV‘𝑇) ∧ (1st ‘(1st𝑠)) = (1st ‘(1st𝑠))))
2322simpld 494 . . . . . . 7 (𝑠𝑃 → (1st ‘(1st𝑠)) ⊆ (mDV‘𝑇))
2417, 23sstrid 3955 . . . . . 6 (𝑠𝑃 → ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ⊆ (mDV‘𝑇))
25 cnvin 6105 . . . . . . 7 ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))
2622simprd 495 . . . . . . . 8 (𝑠𝑃(1st ‘(1st𝑠)) = (1st ‘(1st𝑠)))
27 cnvxp 6118 . . . . . . . . 9 ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))) = ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))
2827a1i 11 . . . . . . . 8 (𝑠𝑃( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))) = ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))
2926, 28ineq12d 4180 . . . . . . 7 (𝑠𝑃 → ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))))
3025, 29eqtrid 2776 . . . . . 6 (𝑠𝑃((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))))
3124, 30jca 511 . . . . 5 (𝑠𝑃 → (((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ⊆ (mDV‘𝑇) ∧ ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))))
3221simp2d 1143 . . . . 5 (𝑠𝑃 → ((2nd ‘(1st𝑠)) ⊆ (mEx‘𝑇) ∧ (2nd ‘(1st𝑠)) ∈ Fin))
3321simp3d 1144 . . . . 5 (𝑠𝑃 → (2nd𝑠) ∈ (mEx‘𝑇))
3418, 19, 5elmpst 35496 . . . . 5 (⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ 𝑃 ↔ ((((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ⊆ (mDV‘𝑇) ∧ ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))) ∧ ((2nd ‘(1st𝑠)) ⊆ (mEx‘𝑇) ∧ (2nd ‘(1st𝑠)) ∈ Fin) ∧ (2nd𝑠) ∈ (mEx‘𝑇)))
3531, 32, 33, 34syl3anbrc 1344 . . . 4 (𝑠𝑃 → ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ 𝑃)
3616, 35eqeltrd 2828 . . 3 (𝑠𝑃 → (𝑅𝑠) ∈ 𝑃)
3736rgen 3046 . 2 𝑠𝑃 (𝑅𝑠) ∈ 𝑃
38 ffnfv 7073 . 2 (𝑅:𝑃𝑃 ↔ (𝑅 Fn 𝑃 ∧ ∀𝑠𝑃 (𝑅𝑠) ∈ 𝑃))
398, 37, 38mpbir2an 711 1 𝑅:𝑃𝑃
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  csb 3859  cun 3909  cin 3910  wss 3911  {csn 4585  cotp 4593   cuni 4867   × cxp 5629  ccnv 5630  cima 5634   Fn wfn 6494  wf 6495  cfv 6499  1st c1st 7945  2nd c2nd 7946  Fincfn 8895  mExcmex 35427  mDVcmdv 35428  mVarscmvrs 35429  mPreStcmpst 35433  mStRedcmsr 35434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-ot 4594  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-1st 7947  df-2nd 7948  df-mpst 35453  df-msr 35454
This theorem is referenced by:  msrrcl  35503  msrid  35505  msrfo  35506  mstapst  35507  elmsta  35508  elmthm  35536  mthmsta  35538  mthmblem  35540
  Copyright terms: Public domain W3C validator