Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrf Structured version   Visualization version   GIF version

Theorem msrf 35564
Description: The reduct of a pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mpstssv.p 𝑃 = (mPreSt‘𝑇)
msrf.r 𝑅 = (mStRed‘𝑇)
Assertion
Ref Expression
msrf 𝑅:𝑃𝑃

Proof of Theorem msrf
Dummy variables 𝑎 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 otex 5440 . . . . 5 ⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑇) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ ∈ V
21csbex 5281 . . . 4 (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑇) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ ∈ V
32csbex 5281 . . 3 (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑇) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ ∈ V
4 eqid 2735 . . . 4 (mVars‘𝑇) = (mVars‘𝑇)
5 mpstssv.p . . . 4 𝑃 = (mPreSt‘𝑇)
6 msrf.r . . . 4 𝑅 = (mStRed‘𝑇)
74, 5, 6msrfval 35559 . . 3 𝑅 = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑇) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
83, 7fnmpti 6681 . 2 𝑅 Fn 𝑃
95mpst123 35562 . . . . . 6 (𝑠𝑃𝑠 = ⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
109fveq2d 6880 . . . . 5 (𝑠𝑃 → (𝑅𝑠) = (𝑅‘⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩))
11 id 22 . . . . . . 7 (𝑠𝑃𝑠𝑃)
129, 11eqeltrrd 2835 . . . . . 6 (𝑠𝑃 → ⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ 𝑃)
13 eqid 2735 . . . . . . 7 ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) = ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))
144, 5, 6, 13msrval 35560 . . . . . 6 (⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ 𝑃 → (𝑅‘⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
1512, 14syl 17 . . . . 5 (𝑠𝑃 → (𝑅‘⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
1610, 15eqtrd 2770 . . . 4 (𝑠𝑃 → (𝑅𝑠) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
17 inss1 4212 . . . . . . 7 ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ⊆ (1st ‘(1st𝑠))
18 eqid 2735 . . . . . . . . . . 11 (mDV‘𝑇) = (mDV‘𝑇)
19 eqid 2735 . . . . . . . . . . 11 (mEx‘𝑇) = (mEx‘𝑇)
2018, 19, 5elmpst 35558 . . . . . . . . . 10 (⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ 𝑃 ↔ (((1st ‘(1st𝑠)) ⊆ (mDV‘𝑇) ∧ (1st ‘(1st𝑠)) = (1st ‘(1st𝑠))) ∧ ((2nd ‘(1st𝑠)) ⊆ (mEx‘𝑇) ∧ (2nd ‘(1st𝑠)) ∈ Fin) ∧ (2nd𝑠) ∈ (mEx‘𝑇)))
2112, 20sylib 218 . . . . . . . . 9 (𝑠𝑃 → (((1st ‘(1st𝑠)) ⊆ (mDV‘𝑇) ∧ (1st ‘(1st𝑠)) = (1st ‘(1st𝑠))) ∧ ((2nd ‘(1st𝑠)) ⊆ (mEx‘𝑇) ∧ (2nd ‘(1st𝑠)) ∈ Fin) ∧ (2nd𝑠) ∈ (mEx‘𝑇)))
2221simp1d 1142 . . . . . . . 8 (𝑠𝑃 → ((1st ‘(1st𝑠)) ⊆ (mDV‘𝑇) ∧ (1st ‘(1st𝑠)) = (1st ‘(1st𝑠))))
2322simpld 494 . . . . . . 7 (𝑠𝑃 → (1st ‘(1st𝑠)) ⊆ (mDV‘𝑇))
2417, 23sstrid 3970 . . . . . 6 (𝑠𝑃 → ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ⊆ (mDV‘𝑇))
25 cnvin 6133 . . . . . . 7 ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))
2622simprd 495 . . . . . . . 8 (𝑠𝑃(1st ‘(1st𝑠)) = (1st ‘(1st𝑠)))
27 cnvxp 6146 . . . . . . . . 9 ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))) = ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))
2827a1i 11 . . . . . . . 8 (𝑠𝑃( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))) = ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))
2926, 28ineq12d 4196 . . . . . . 7 (𝑠𝑃 → ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))))
3025, 29eqtrid 2782 . . . . . 6 (𝑠𝑃((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))))
3124, 30jca 511 . . . . 5 (𝑠𝑃 → (((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ⊆ (mDV‘𝑇) ∧ ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))))
3221simp2d 1143 . . . . 5 (𝑠𝑃 → ((2nd ‘(1st𝑠)) ⊆ (mEx‘𝑇) ∧ (2nd ‘(1st𝑠)) ∈ Fin))
3321simp3d 1144 . . . . 5 (𝑠𝑃 → (2nd𝑠) ∈ (mEx‘𝑇))
3418, 19, 5elmpst 35558 . . . . 5 (⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ 𝑃 ↔ ((((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ⊆ (mDV‘𝑇) ∧ ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))) ∧ ((2nd ‘(1st𝑠)) ⊆ (mEx‘𝑇) ∧ (2nd ‘(1st𝑠)) ∈ Fin) ∧ (2nd𝑠) ∈ (mEx‘𝑇)))
3531, 32, 33, 34syl3anbrc 1344 . . . 4 (𝑠𝑃 → ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ 𝑃)
3616, 35eqeltrd 2834 . . 3 (𝑠𝑃 → (𝑅𝑠) ∈ 𝑃)
3736rgen 3053 . 2 𝑠𝑃 (𝑅𝑠) ∈ 𝑃
38 ffnfv 7109 . 2 (𝑅:𝑃𝑃 ↔ (𝑅 Fn 𝑃 ∧ ∀𝑠𝑃 (𝑅𝑠) ∈ 𝑃))
398, 37, 38mpbir2an 711 1 𝑅:𝑃𝑃
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  csb 3874  cun 3924  cin 3925  wss 3926  {csn 4601  cotp 4609   cuni 4883   × cxp 5652  ccnv 5653  cima 5657   Fn wfn 6526  wf 6527  cfv 6531  1st c1st 7986  2nd c2nd 7987  Fincfn 8959  mExcmex 35489  mDVcmdv 35490  mVarscmvrs 35491  mPreStcmpst 35495  mStRedcmsr 35496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-ot 4610  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-1st 7988  df-2nd 7989  df-mpst 35515  df-msr 35516
This theorem is referenced by:  msrrcl  35565  msrid  35567  msrfo  35568  mstapst  35569  elmsta  35570  elmthm  35598  mthmsta  35600  mthmblem  35602
  Copyright terms: Public domain W3C validator