![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pcmplfinf | Structured version Visualization version GIF version |
Description: Given a paracompact topology π½ and an open cover π, there exists an open refinement ran π that is locally finite, using the same index as the original cover π. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
Ref | Expression |
---|---|
pcmplfin.x | β’ π = βͺ π½ |
Ref | Expression |
---|---|
pcmplfinf | β’ ((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β βπ(π:πβΆπ½ β§ ran πRefπ β§ ran π β (LocFinβπ½))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcmplfin.x | . . 3 β’ π = βͺ π½ | |
2 | simpll2 1214 | . . 3 β’ ((((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β§ π£ β π« π½) β§ (π£ β (LocFinβπ½) β§ π£Refπ)) β π β π½) | |
3 | simpll3 1215 | . . 3 β’ ((((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β§ π£ β π« π½) β§ (π£ β (LocFinβπ½) β§ π£Refπ)) β π = βͺ π) | |
4 | elpwi 4610 | . . . 4 β’ (π£ β π« π½ β π£ β π½) | |
5 | 4 | ad2antlr 726 | . . 3 β’ ((((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β§ π£ β π« π½) β§ (π£ β (LocFinβπ½) β§ π£Refπ)) β π£ β π½) |
6 | simprr 772 | . . 3 β’ ((((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β§ π£ β π« π½) β§ (π£ β (LocFinβπ½) β§ π£Refπ)) β π£Refπ) | |
7 | simprl 770 | . . 3 β’ ((((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β§ π£ β π« π½) β§ (π£ β (LocFinβπ½) β§ π£Refπ)) β π£ β (LocFinβπ½)) | |
8 | 1, 2, 3, 5, 6, 7 | locfinref 32821 | . 2 β’ ((((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β§ π£ β π« π½) β§ (π£ β (LocFinβπ½) β§ π£Refπ)) β βπ(π:πβΆπ½ β§ ran πRefπ β§ ran π β (LocFinβπ½))) |
9 | 1 | pcmplfin 32840 | . 2 β’ ((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β βπ£ β π« π½(π£ β (LocFinβπ½) β§ π£Refπ)) |
10 | 8, 9 | r19.29a 3163 | 1 β’ ((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β βπ(π:πβΆπ½ β§ ran πRefπ β§ ran π β (LocFinβπ½))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 βwex 1782 β wcel 2107 β wss 3949 π« cpw 4603 βͺ cuni 4909 class class class wbr 5149 ran crn 5678 βΆwf 6540 βcfv 6544 Refcref 23006 LocFinclocfin 23008 Paracompcpcmp 32835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-reg 9587 ax-inf2 9636 ax-ac2 10458 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-fin 8943 df-r1 9759 df-rank 9760 df-card 9934 df-ac 10111 df-top 22396 df-topon 22413 df-ref 23009 df-locfin 23011 df-cref 32823 df-pcmp 32836 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |