![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pcmplfinf | Structured version Visualization version GIF version |
Description: Given a paracompact topology π½ and an open cover π, there exists an open refinement ran π that is locally finite, using the same index as the original cover π. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
Ref | Expression |
---|---|
pcmplfin.x | β’ π = βͺ π½ |
Ref | Expression |
---|---|
pcmplfinf | β’ ((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β βπ(π:πβΆπ½ β§ ran πRefπ β§ ran π β (LocFinβπ½))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcmplfin.x | . . 3 β’ π = βͺ π½ | |
2 | simpll2 1211 | . . 3 β’ ((((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β§ π£ β π« π½) β§ (π£ β (LocFinβπ½) β§ π£Refπ)) β π β π½) | |
3 | simpll3 1212 | . . 3 β’ ((((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β§ π£ β π« π½) β§ (π£ β (LocFinβπ½) β§ π£Refπ)) β π = βͺ π) | |
4 | elpwi 4605 | . . . 4 β’ (π£ β π« π½ β π£ β π½) | |
5 | 4 | ad2antlr 726 | . . 3 β’ ((((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β§ π£ β π« π½) β§ (π£ β (LocFinβπ½) β§ π£Refπ)) β π£ β π½) |
6 | simprr 772 | . . 3 β’ ((((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β§ π£ β π« π½) β§ (π£ β (LocFinβπ½) β§ π£Refπ)) β π£Refπ) | |
7 | simprl 770 | . . 3 β’ ((((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β§ π£ β π« π½) β§ (π£ β (LocFinβπ½) β§ π£Refπ)) β π£ β (LocFinβπ½)) | |
8 | 1, 2, 3, 5, 6, 7 | locfinref 33378 | . 2 β’ ((((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β§ π£ β π« π½) β§ (π£ β (LocFinβπ½) β§ π£Refπ)) β βπ(π:πβΆπ½ β§ ran πRefπ β§ ran π β (LocFinβπ½))) |
9 | 1 | pcmplfin 33397 | . 2 β’ ((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β βπ£ β π« π½(π£ β (LocFinβπ½) β§ π£Refπ)) |
10 | 8, 9 | r19.29a 3157 | 1 β’ ((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β βπ(π:πβΆπ½ β§ ran πRefπ β§ ran π β (LocFinβπ½))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1085 = wceq 1534 βwex 1774 β wcel 2099 β wss 3944 π« cpw 4598 βͺ cuni 4903 class class class wbr 5142 ran crn 5673 βΆwf 6538 βcfv 6542 Refcref 23393 LocFinclocfin 23395 Paracompcpcmp 33392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-reg 9607 ax-inf2 9656 ax-ac2 10478 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8956 df-dom 8957 df-fin 8959 df-r1 9779 df-rank 9780 df-card 9954 df-ac 10131 df-top 22783 df-topon 22800 df-ref 23396 df-locfin 23398 df-cref 33380 df-pcmp 33393 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |