Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pcmplfinf Structured version   Visualization version   GIF version

Theorem pcmplfinf 31790
Description: Given a paracompact topology 𝐽 and an open cover 𝑈, there exists an open refinement ran 𝑓 that is locally finite, using the same index as the original cover 𝑈. (Contributed by Thierry Arnoux, 31-Jan-2020.)
Hypothesis
Ref Expression
pcmplfin.x 𝑋 = 𝐽
Assertion
Ref Expression
pcmplfinf ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
Distinct variable groups:   𝑓,𝐽   𝑈,𝑓   𝑓,𝑋

Proof of Theorem pcmplfinf
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 pcmplfin.x . . 3 𝑋 = 𝐽
2 simpll2 1211 . . 3 ((((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑈𝐽)
3 simpll3 1212 . . 3 ((((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑋 = 𝑈)
4 elpwi 4547 . . . 4 (𝑣 ∈ 𝒫 𝐽𝑣𝐽)
54ad2antlr 723 . . 3 ((((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑣𝐽)
6 simprr 769 . . 3 ((((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑣Ref𝑈)
7 simprl 767 . . 3 ((((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑣 ∈ (LocFin‘𝐽))
81, 2, 3, 5, 6, 7locfinref 31770 . 2 ((((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
91pcmplfin 31789 . 2 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈))
108, 9r19.29a 3219 1 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1541  wex 1785  wcel 2109  wss 3891  𝒫 cpw 4538   cuni 4844   class class class wbr 5078  ran crn 5589  wf 6426  cfv 6430  Refcref 22634  LocFinclocfin 22636  Paracompcpcmp 31784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-reg 9312  ax-inf2 9360  ax-ac2 10203
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-en 8708  df-dom 8709  df-fin 8711  df-r1 9506  df-rank 9507  df-card 9681  df-ac 9856  df-top 22024  df-topon 22041  df-ref 22637  df-locfin 22639  df-cref 31772  df-pcmp 31785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator