| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pcmplfinf | Structured version Visualization version GIF version | ||
| Description: Given a paracompact topology 𝐽 and an open cover 𝑈, there exists an open refinement ran 𝑓 that is locally finite, using the same index as the original cover 𝑈. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
| Ref | Expression |
|---|---|
| pcmplfin.x | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| pcmplfinf | ⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑓(𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcmplfin.x | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | simpll2 1214 | . . 3 ⊢ ((((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑈 ⊆ 𝐽) | |
| 3 | simpll3 1215 | . . 3 ⊢ ((((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑋 = ∪ 𝑈) | |
| 4 | elpwi 4557 | . . . 4 ⊢ (𝑣 ∈ 𝒫 𝐽 → 𝑣 ⊆ 𝐽) | |
| 5 | 4 | ad2antlr 727 | . . 3 ⊢ ((((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑣 ⊆ 𝐽) |
| 6 | simprr 772 | . . 3 ⊢ ((((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑣Ref𝑈) | |
| 7 | simprl 770 | . . 3 ⊢ ((((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑣 ∈ (LocFin‘𝐽)) | |
| 8 | 1, 2, 3, 5, 6, 7 | locfinref 33849 | . 2 ⊢ ((((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → ∃𝑓(𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) |
| 9 | 1 | pcmplfin 33868 | . 2 ⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) |
| 10 | 8, 9 | r19.29a 3140 | 1 ⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑓(𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ⊆ wss 3902 𝒫 cpw 4550 ∪ cuni 4859 class class class wbr 5091 ran crn 5617 ⟶wf 6477 ‘cfv 6481 Refcref 23415 LocFinclocfin 23417 Paracompcpcmp 33863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-reg 9478 ax-inf2 9531 ax-ac2 10351 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-fin 8873 df-r1 9654 df-rank 9655 df-card 9829 df-ac 10004 df-top 22807 df-topon 22824 df-ref 23418 df-locfin 23420 df-cref 33851 df-pcmp 33864 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |