![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pcmplfinf | Structured version Visualization version GIF version |
Description: Given a paracompact topology 𝐽 and an open cover 𝑈, there exists an open refinement ran 𝑓 that is locally finite, using the same index as the original cover 𝑈. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
Ref | Expression |
---|---|
pcmplfin.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
pcmplfinf | ⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑓(𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcmplfin.x | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | simpll2 1213 | . . 3 ⊢ ((((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑈 ⊆ 𝐽) | |
3 | simpll3 1214 | . . 3 ⊢ ((((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑋 = ∪ 𝑈) | |
4 | elpwi 4629 | . . . 4 ⊢ (𝑣 ∈ 𝒫 𝐽 → 𝑣 ⊆ 𝐽) | |
5 | 4 | ad2antlr 726 | . . 3 ⊢ ((((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑣 ⊆ 𝐽) |
6 | simprr 772 | . . 3 ⊢ ((((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑣Ref𝑈) | |
7 | simprl 770 | . . 3 ⊢ ((((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑣 ∈ (LocFin‘𝐽)) | |
8 | 1, 2, 3, 5, 6, 7 | locfinref 33787 | . 2 ⊢ ((((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → ∃𝑓(𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) |
9 | 1 | pcmplfin 33806 | . 2 ⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) |
10 | 8, 9 | r19.29a 3168 | 1 ⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑓(𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 class class class wbr 5166 ran crn 5701 ⟶wf 6569 ‘cfv 6573 Refcref 23531 LocFinclocfin 23533 Paracompcpcmp 33801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-reg 9661 ax-inf2 9710 ax-ac2 10532 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-fin 9007 df-r1 9833 df-rank 9834 df-card 10008 df-ac 10185 df-top 22921 df-topon 22938 df-ref 23534 df-locfin 23536 df-cref 33789 df-pcmp 33802 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |