![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pcmplfinf | Structured version Visualization version GIF version |
Description: Given a paracompact topology π½ and an open cover π, there exists an open refinement ran π that is locally finite, using the same index as the original cover π. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
Ref | Expression |
---|---|
pcmplfin.x | β’ π = βͺ π½ |
Ref | Expression |
---|---|
pcmplfinf | β’ ((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β βπ(π:πβΆπ½ β§ ran πRefπ β§ ran π β (LocFinβπ½))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcmplfin.x | . . 3 β’ π = βͺ π½ | |
2 | simpll2 1210 | . . 3 β’ ((((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β§ π£ β π« π½) β§ (π£ β (LocFinβπ½) β§ π£Refπ)) β π β π½) | |
3 | simpll3 1211 | . . 3 β’ ((((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β§ π£ β π« π½) β§ (π£ β (LocFinβπ½) β§ π£Refπ)) β π = βͺ π) | |
4 | elpwi 4610 | . . . 4 β’ (π£ β π« π½ β π£ β π½) | |
5 | 4 | ad2antlr 725 | . . 3 β’ ((((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β§ π£ β π« π½) β§ (π£ β (LocFinβπ½) β§ π£Refπ)) β π£ β π½) |
6 | simprr 771 | . . 3 β’ ((((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β§ π£ β π« π½) β§ (π£ β (LocFinβπ½) β§ π£Refπ)) β π£Refπ) | |
7 | simprl 769 | . . 3 β’ ((((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β§ π£ β π« π½) β§ (π£ β (LocFinβπ½) β§ π£Refπ)) β π£ β (LocFinβπ½)) | |
8 | 1, 2, 3, 5, 6, 7 | locfinref 33512 | . 2 β’ ((((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β§ π£ β π« π½) β§ (π£ β (LocFinβπ½) β§ π£Refπ)) β βπ(π:πβΆπ½ β§ ran πRefπ β§ ran π β (LocFinβπ½))) |
9 | 1 | pcmplfin 33531 | . 2 β’ ((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β βπ£ β π« π½(π£ β (LocFinβπ½) β§ π£Refπ)) |
10 | 8, 9 | r19.29a 3152 | 1 β’ ((π½ β Paracomp β§ π β π½ β§ π = βͺ π) β βπ(π:πβΆπ½ β§ ran πRefπ β§ ran π β (LocFinβπ½))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1084 = wceq 1533 βwex 1773 β wcel 2098 β wss 3945 π« cpw 4603 βͺ cuni 4908 class class class wbr 5148 ran crn 5678 βΆwf 6543 βcfv 6547 Refcref 23436 LocFinclocfin 23438 Paracompcpcmp 33526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-reg 9615 ax-inf2 9664 ax-ac2 10486 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-isom 6556 df-riota 7373 df-ov 7420 df-om 7870 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8963 df-dom 8964 df-fin 8966 df-r1 9787 df-rank 9788 df-card 9962 df-ac 10139 df-top 22826 df-topon 22843 df-ref 23439 df-locfin 23441 df-cref 33514 df-pcmp 33527 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |