Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pcmplfinf Structured version   Visualization version   GIF version

Theorem pcmplfinf 33858
Description: Given a paracompact topology 𝐽 and an open cover 𝑈, there exists an open refinement ran 𝑓 that is locally finite, using the same index as the original cover 𝑈. (Contributed by Thierry Arnoux, 31-Jan-2020.)
Hypothesis
Ref Expression
pcmplfin.x 𝑋 = 𝐽
Assertion
Ref Expression
pcmplfinf ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
Distinct variable groups:   𝑓,𝐽   𝑈,𝑓   𝑓,𝑋

Proof of Theorem pcmplfinf
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 pcmplfin.x . . 3 𝑋 = 𝐽
2 simpll2 1214 . . 3 ((((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑈𝐽)
3 simpll3 1215 . . 3 ((((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑋 = 𝑈)
4 elpwi 4573 . . . 4 (𝑣 ∈ 𝒫 𝐽𝑣𝐽)
54ad2antlr 727 . . 3 ((((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑣𝐽)
6 simprr 772 . . 3 ((((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑣Ref𝑈)
7 simprl 770 . . 3 ((((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑣 ∈ (LocFin‘𝐽))
81, 2, 3, 5, 6, 7locfinref 33838 . 2 ((((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
91pcmplfin 33857 . 2 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈))
108, 9r19.29a 3142 1 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wss 3917  𝒫 cpw 4566   cuni 4874   class class class wbr 5110  ran crn 5642  wf 6510  cfv 6514  Refcref 23396  LocFinclocfin 23398  Paracompcpcmp 33852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-fin 8925  df-r1 9724  df-rank 9725  df-card 9899  df-ac 10076  df-top 22788  df-topon 22805  df-ref 23399  df-locfin 23401  df-cref 33840  df-pcmp 33853
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator