Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2di Structured version   Visualization version   GIF version

Theorem ip2di 20337
 Description: Distributive law for inner product. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipdir.g + = (+g𝑊)
ipdir.p = (+g𝐹)
ip2di.1 (𝜑𝑊 ∈ PreHil)
ip2di.2 (𝜑𝐴𝑉)
ip2di.3 (𝜑𝐵𝑉)
ip2di.4 (𝜑𝐶𝑉)
ip2di.5 (𝜑𝐷𝑉)
Assertion
Ref Expression
ip2di (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) (𝐵 , 𝐷)) ((𝐴 , 𝐷) (𝐵 , 𝐶))))

Proof of Theorem ip2di
StepHypRef Expression
1 ip2di.1 . . 3 (𝜑𝑊 ∈ PreHil)
2 ip2di.2 . . 3 (𝜑𝐴𝑉)
3 ip2di.3 . . 3 (𝜑𝐵𝑉)
4 phllmod 20326 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
51, 4syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
6 ip2di.4 . . . 4 (𝜑𝐶𝑉)
7 ip2di.5 . . . 4 (𝜑𝐷𝑉)
8 phllmhm.v . . . . 5 𝑉 = (Base‘𝑊)
9 ipdir.g . . . . 5 + = (+g𝑊)
108, 9lmodvacl 19648 . . . 4 ((𝑊 ∈ LMod ∧ 𝐶𝑉𝐷𝑉) → (𝐶 + 𝐷) ∈ 𝑉)
115, 6, 7, 10syl3anc 1368 . . 3 (𝜑 → (𝐶 + 𝐷) ∈ 𝑉)
12 phlsrng.f . . . 4 𝐹 = (Scalar‘𝑊)
13 phllmhm.h . . . 4 , = (·𝑖𝑊)
14 ipdir.p . . . 4 = (+g𝐹)
1512, 13, 8, 9, 14ipdir 20335 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉 ∧ (𝐶 + 𝐷) ∈ 𝑉)) → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = ((𝐴 , (𝐶 + 𝐷)) (𝐵 , (𝐶 + 𝐷))))
161, 2, 3, 11, 15syl13anc 1369 . 2 (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = ((𝐴 , (𝐶 + 𝐷)) (𝐵 , (𝐶 + 𝐷))))
1712, 13, 8, 9, 14ipdi 20336 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐶𝑉𝐷𝑉)) → (𝐴 , (𝐶 + 𝐷)) = ((𝐴 , 𝐶) (𝐴 , 𝐷)))
181, 2, 6, 7, 17syl13anc 1369 . . 3 (𝜑 → (𝐴 , (𝐶 + 𝐷)) = ((𝐴 , 𝐶) (𝐴 , 𝐷)))
1912, 13, 8, 9, 14ipdi 20336 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐵𝑉𝐶𝑉𝐷𝑉)) → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐶) (𝐵 , 𝐷)))
201, 3, 6, 7, 19syl13anc 1369 . . . 4 (𝜑 → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐶) (𝐵 , 𝐷)))
2112phlsrng 20327 . . . . . 6 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
22 srngring 19623 . . . . . 6 (𝐹 ∈ *-Ring → 𝐹 ∈ Ring)
23 ringcmn 19334 . . . . . 6 (𝐹 ∈ Ring → 𝐹 ∈ CMnd)
241, 21, 22, 234syl 19 . . . . 5 (𝜑𝐹 ∈ CMnd)
25 eqid 2824 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
2612, 13, 8, 25ipcl 20329 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐶𝑉) → (𝐵 , 𝐶) ∈ (Base‘𝐹))
271, 3, 6, 26syl3anc 1368 . . . . 5 (𝜑 → (𝐵 , 𝐶) ∈ (Base‘𝐹))
2812, 13, 8, 25ipcl 20329 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐷𝑉) → (𝐵 , 𝐷) ∈ (Base‘𝐹))
291, 3, 7, 28syl3anc 1368 . . . . 5 (𝜑 → (𝐵 , 𝐷) ∈ (Base‘𝐹))
3025, 14cmncom 18923 . . . . 5 ((𝐹 ∈ CMnd ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐷) ∈ (Base‘𝐹)) → ((𝐵 , 𝐶) (𝐵 , 𝐷)) = ((𝐵 , 𝐷) (𝐵 , 𝐶)))
3124, 27, 29, 30syl3anc 1368 . . . 4 (𝜑 → ((𝐵 , 𝐶) (𝐵 , 𝐷)) = ((𝐵 , 𝐷) (𝐵 , 𝐶)))
3220, 31eqtrd 2859 . . 3 (𝜑 → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐷) (𝐵 , 𝐶)))
3318, 32oveq12d 7167 . 2 (𝜑 → ((𝐴 , (𝐶 + 𝐷)) (𝐵 , (𝐶 + 𝐷))) = (((𝐴 , 𝐶) (𝐴 , 𝐷)) ((𝐵 , 𝐷) (𝐵 , 𝐶))))
3412, 13, 8, 25ipcl 20329 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐶𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹))
351, 2, 6, 34syl3anc 1368 . . 3 (𝜑 → (𝐴 , 𝐶) ∈ (Base‘𝐹))
3612, 13, 8, 25ipcl 20329 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐷𝑉) → (𝐴 , 𝐷) ∈ (Base‘𝐹))
371, 2, 7, 36syl3anc 1368 . . 3 (𝜑 → (𝐴 , 𝐷) ∈ (Base‘𝐹))
3825, 14cmn4 18926 . . 3 ((𝐹 ∈ CMnd ∧ ((𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐴 , 𝐷) ∈ (Base‘𝐹)) ∧ ((𝐵 , 𝐷) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹))) → (((𝐴 , 𝐶) (𝐴 , 𝐷)) ((𝐵 , 𝐷) (𝐵 , 𝐶))) = (((𝐴 , 𝐶) (𝐵 , 𝐷)) ((𝐴 , 𝐷) (𝐵 , 𝐶))))
3924, 35, 37, 29, 27, 38syl122anc 1376 . 2 (𝜑 → (((𝐴 , 𝐶) (𝐴 , 𝐷)) ((𝐵 , 𝐷) (𝐵 , 𝐶))) = (((𝐴 , 𝐶) (𝐵 , 𝐷)) ((𝐴 , 𝐷) (𝐵 , 𝐶))))
4016, 33, 393eqtrd 2863 1 (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) (𝐵 , 𝐷)) ((𝐴 , 𝐷) (𝐵 , 𝐶))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2115  ‘cfv 6343  (class class class)co 7149  Basecbs 16483  +gcplusg 16565  Scalarcsca 16568  ·𝑖cip 16570  CMndccmn 18906  Ringcrg 19297  *-Ringcsr 19615  LModclmod 19634  PreHilcphl 20320 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-tpos 7888  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-minusg 18107  df-ghm 18356  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-oppr 19376  df-rnghom 19470  df-staf 19616  df-srng 19617  df-lmod 19636  df-lmhm 19794  df-lvec 19875  df-sra 19944  df-rgmod 19945  df-phl 20322 This theorem is referenced by:  cph2di  23819
 Copyright terms: Public domain W3C validator