Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ip2di | Structured version Visualization version GIF version |
Description: Distributive law for inner product. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
ipdir.g | ⊢ + = (+g‘𝑊) |
ipdir.p | ⊢ ⨣ = (+g‘𝐹) |
ip2di.1 | ⊢ (𝜑 → 𝑊 ∈ PreHil) |
ip2di.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ip2di.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
ip2di.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
ip2di.5 | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
Ref | Expression |
---|---|
ip2di | ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ip2di.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ PreHil) | |
2 | ip2di.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | ip2di.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
4 | phllmod 20831 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
6 | ip2di.4 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
7 | ip2di.5 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
8 | phllmhm.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
9 | ipdir.g | . . . . 5 ⊢ + = (+g‘𝑊) | |
10 | 8, 9 | lmodvacl 20133 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (𝐶 + 𝐷) ∈ 𝑉) |
11 | 5, 6, 7, 10 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐷) ∈ 𝑉) |
12 | phlsrng.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
13 | phllmhm.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
14 | ipdir.p | . . . 4 ⊢ ⨣ = (+g‘𝐹) | |
15 | 12, 13, 8, 9, 14 | ipdir 20840 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ (𝐶 + 𝐷) ∈ 𝑉)) → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = ((𝐴 , (𝐶 + 𝐷)) ⨣ (𝐵 , (𝐶 + 𝐷)))) |
16 | 1, 2, 3, 11, 15 | syl13anc 1371 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = ((𝐴 , (𝐶 + 𝐷)) ⨣ (𝐵 , (𝐶 + 𝐷)))) |
17 | 12, 13, 8, 9, 14 | ipdi 20841 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐴 , (𝐶 + 𝐷)) = ((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷))) |
18 | 1, 2, 6, 7, 17 | syl13anc 1371 | . . 3 ⊢ (𝜑 → (𝐴 , (𝐶 + 𝐷)) = ((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷))) |
19 | 12, 13, 8, 9, 14 | ipdi 20841 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐶) ⨣ (𝐵 , 𝐷))) |
20 | 1, 3, 6, 7, 19 | syl13anc 1371 | . . . 4 ⊢ (𝜑 → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐶) ⨣ (𝐵 , 𝐷))) |
21 | 12 | phlsrng 20832 | . . . . . 6 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
22 | srngring 20108 | . . . . . 6 ⊢ (𝐹 ∈ *-Ring → 𝐹 ∈ Ring) | |
23 | ringcmn 19816 | . . . . . 6 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ CMnd) | |
24 | 1, 21, 22, 23 | 4syl 19 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ CMnd) |
25 | eqid 2740 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
26 | 12, 13, 8, 25 | ipcl 20834 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐵 , 𝐶) ∈ (Base‘𝐹)) |
27 | 1, 3, 6, 26 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝐵 , 𝐶) ∈ (Base‘𝐹)) |
28 | 12, 13, 8, 25 | ipcl 20834 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (𝐵 , 𝐷) ∈ (Base‘𝐹)) |
29 | 1, 3, 7, 28 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝐵 , 𝐷) ∈ (Base‘𝐹)) |
30 | 25, 14 | cmncom 19399 | . . . . 5 ⊢ ((𝐹 ∈ CMnd ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐷) ∈ (Base‘𝐹)) → ((𝐵 , 𝐶) ⨣ (𝐵 , 𝐷)) = ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) |
31 | 24, 27, 29, 30 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → ((𝐵 , 𝐶) ⨣ (𝐵 , 𝐷)) = ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) |
32 | 20, 31 | eqtrd 2780 | . . 3 ⊢ (𝜑 → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) |
33 | 18, 32 | oveq12d 7287 | . 2 ⊢ (𝜑 → ((𝐴 , (𝐶 + 𝐷)) ⨣ (𝐵 , (𝐶 + 𝐷))) = (((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷)) ⨣ ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
34 | 12, 13, 8, 25 | ipcl 20834 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹)) |
35 | 1, 2, 6, 34 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝐴 , 𝐶) ∈ (Base‘𝐹)) |
36 | 12, 13, 8, 25 | ipcl 20834 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (𝐴 , 𝐷) ∈ (Base‘𝐹)) |
37 | 1, 2, 7, 36 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝐴 , 𝐷) ∈ (Base‘𝐹)) |
38 | 25, 14 | cmn4 19402 | . . 3 ⊢ ((𝐹 ∈ CMnd ∧ ((𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐴 , 𝐷) ∈ (Base‘𝐹)) ∧ ((𝐵 , 𝐷) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹))) → (((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷)) ⨣ ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
39 | 24, 35, 37, 29, 27, 38 | syl122anc 1378 | . 2 ⊢ (𝜑 → (((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷)) ⨣ ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
40 | 16, 33, 39 | 3eqtrd 2784 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ‘cfv 6431 (class class class)co 7269 Basecbs 16908 +gcplusg 16958 Scalarcsca 16961 ·𝑖cip 16963 CMndccmn 19382 Ringcrg 19779 *-Ringcsr 20100 LModclmod 20119 PreHilcphl 20825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-2nd 7823 df-tpos 8031 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-er 8479 df-map 8598 df-en 8715 df-dom 8716 df-sdom 8717 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-nn 11972 df-2 12034 df-3 12035 df-4 12036 df-5 12037 df-6 12038 df-7 12039 df-8 12040 df-sets 16861 df-slot 16879 df-ndx 16891 df-base 16909 df-plusg 16971 df-mulr 16972 df-sca 16974 df-vsca 16975 df-ip 16976 df-0g 17148 df-mgm 18322 df-sgrp 18371 df-mnd 18382 df-mhm 18426 df-grp 18576 df-minusg 18577 df-ghm 18828 df-cmn 19384 df-abl 19385 df-mgp 19717 df-ur 19734 df-ring 19781 df-oppr 19858 df-rnghom 19955 df-staf 20101 df-srng 20102 df-lmod 20121 df-lmhm 20280 df-lvec 20361 df-sra 20430 df-rgmod 20431 df-phl 20827 |
This theorem is referenced by: cph2di 24367 |
Copyright terms: Public domain | W3C validator |