MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2di Structured version   Visualization version   GIF version

Theorem ip2di 21578
Description: Distributive law for inner product. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipdir.g + = (+g𝑊)
ipdir.p = (+g𝐹)
ip2di.1 (𝜑𝑊 ∈ PreHil)
ip2di.2 (𝜑𝐴𝑉)
ip2di.3 (𝜑𝐵𝑉)
ip2di.4 (𝜑𝐶𝑉)
ip2di.5 (𝜑𝐷𝑉)
Assertion
Ref Expression
ip2di (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) (𝐵 , 𝐷)) ((𝐴 , 𝐷) (𝐵 , 𝐶))))

Proof of Theorem ip2di
StepHypRef Expression
1 ip2di.1 . . 3 (𝜑𝑊 ∈ PreHil)
2 ip2di.2 . . 3 (𝜑𝐴𝑉)
3 ip2di.3 . . 3 (𝜑𝐵𝑉)
4 phllmod 21567 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
51, 4syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
6 ip2di.4 . . . 4 (𝜑𝐶𝑉)
7 ip2di.5 . . . 4 (𝜑𝐷𝑉)
8 phllmhm.v . . . . 5 𝑉 = (Base‘𝑊)
9 ipdir.g . . . . 5 + = (+g𝑊)
108, 9lmodvacl 20808 . . . 4 ((𝑊 ∈ LMod ∧ 𝐶𝑉𝐷𝑉) → (𝐶 + 𝐷) ∈ 𝑉)
115, 6, 7, 10syl3anc 1373 . . 3 (𝜑 → (𝐶 + 𝐷) ∈ 𝑉)
12 phlsrng.f . . . 4 𝐹 = (Scalar‘𝑊)
13 phllmhm.h . . . 4 , = (·𝑖𝑊)
14 ipdir.p . . . 4 = (+g𝐹)
1512, 13, 8, 9, 14ipdir 21576 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉 ∧ (𝐶 + 𝐷) ∈ 𝑉)) → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = ((𝐴 , (𝐶 + 𝐷)) (𝐵 , (𝐶 + 𝐷))))
161, 2, 3, 11, 15syl13anc 1374 . 2 (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = ((𝐴 , (𝐶 + 𝐷)) (𝐵 , (𝐶 + 𝐷))))
1712, 13, 8, 9, 14ipdi 21577 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐶𝑉𝐷𝑉)) → (𝐴 , (𝐶 + 𝐷)) = ((𝐴 , 𝐶) (𝐴 , 𝐷)))
181, 2, 6, 7, 17syl13anc 1374 . . 3 (𝜑 → (𝐴 , (𝐶 + 𝐷)) = ((𝐴 , 𝐶) (𝐴 , 𝐷)))
1912, 13, 8, 9, 14ipdi 21577 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐵𝑉𝐶𝑉𝐷𝑉)) → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐶) (𝐵 , 𝐷)))
201, 3, 6, 7, 19syl13anc 1374 . . . 4 (𝜑 → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐶) (𝐵 , 𝐷)))
2112phlsrng 21568 . . . . . 6 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
22 srngring 20761 . . . . . 6 (𝐹 ∈ *-Ring → 𝐹 ∈ Ring)
23 ringcmn 20200 . . . . . 6 (𝐹 ∈ Ring → 𝐹 ∈ CMnd)
241, 21, 22, 234syl 19 . . . . 5 (𝜑𝐹 ∈ CMnd)
25 eqid 2731 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
2612, 13, 8, 25ipcl 21570 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐶𝑉) → (𝐵 , 𝐶) ∈ (Base‘𝐹))
271, 3, 6, 26syl3anc 1373 . . . . 5 (𝜑 → (𝐵 , 𝐶) ∈ (Base‘𝐹))
2812, 13, 8, 25ipcl 21570 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐷𝑉) → (𝐵 , 𝐷) ∈ (Base‘𝐹))
291, 3, 7, 28syl3anc 1373 . . . . 5 (𝜑 → (𝐵 , 𝐷) ∈ (Base‘𝐹))
3025, 14cmncom 19710 . . . . 5 ((𝐹 ∈ CMnd ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐷) ∈ (Base‘𝐹)) → ((𝐵 , 𝐶) (𝐵 , 𝐷)) = ((𝐵 , 𝐷) (𝐵 , 𝐶)))
3124, 27, 29, 30syl3anc 1373 . . . 4 (𝜑 → ((𝐵 , 𝐶) (𝐵 , 𝐷)) = ((𝐵 , 𝐷) (𝐵 , 𝐶)))
3220, 31eqtrd 2766 . . 3 (𝜑 → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐷) (𝐵 , 𝐶)))
3318, 32oveq12d 7364 . 2 (𝜑 → ((𝐴 , (𝐶 + 𝐷)) (𝐵 , (𝐶 + 𝐷))) = (((𝐴 , 𝐶) (𝐴 , 𝐷)) ((𝐵 , 𝐷) (𝐵 , 𝐶))))
3412, 13, 8, 25ipcl 21570 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐶𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹))
351, 2, 6, 34syl3anc 1373 . . 3 (𝜑 → (𝐴 , 𝐶) ∈ (Base‘𝐹))
3612, 13, 8, 25ipcl 21570 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐷𝑉) → (𝐴 , 𝐷) ∈ (Base‘𝐹))
371, 2, 7, 36syl3anc 1373 . . 3 (𝜑 → (𝐴 , 𝐷) ∈ (Base‘𝐹))
3825, 14cmn4 19713 . . 3 ((𝐹 ∈ CMnd ∧ ((𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐴 , 𝐷) ∈ (Base‘𝐹)) ∧ ((𝐵 , 𝐷) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹))) → (((𝐴 , 𝐶) (𝐴 , 𝐷)) ((𝐵 , 𝐷) (𝐵 , 𝐶))) = (((𝐴 , 𝐶) (𝐵 , 𝐷)) ((𝐴 , 𝐷) (𝐵 , 𝐶))))
3924, 35, 37, 29, 27, 38syl122anc 1381 . 2 (𝜑 → (((𝐴 , 𝐶) (𝐴 , 𝐷)) ((𝐵 , 𝐷) (𝐵 , 𝐶))) = (((𝐴 , 𝐶) (𝐵 , 𝐷)) ((𝐴 , 𝐷) (𝐵 , 𝐶))))
4016, 33, 393eqtrd 2770 1 (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) (𝐵 , 𝐷)) ((𝐴 , 𝐷) (𝐵 , 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  Scalarcsca 17164  ·𝑖cip 17166  CMndccmn 19692  Ringcrg 20151  *-Ringcsr 20753  LModclmod 20793  PreHilcphl 21561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-ghm 19125  df-cmn 19694  df-abl 19695  df-mgp 20059  df-ur 20100  df-ring 20153  df-oppr 20255  df-rhm 20390  df-staf 20754  df-srng 20755  df-lmod 20795  df-lmhm 20956  df-lvec 21037  df-sra 21107  df-rgmod 21108  df-phl 21563
This theorem is referenced by:  cph2di  25134
  Copyright terms: Public domain W3C validator