MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2di Structured version   Visualization version   GIF version

Theorem ip2di 20355
Description: Distributive law for inner product. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipdir.g + = (+g𝑊)
ipdir.p = (+g𝐹)
ip2di.1 (𝜑𝑊 ∈ PreHil)
ip2di.2 (𝜑𝐴𝑉)
ip2di.3 (𝜑𝐵𝑉)
ip2di.4 (𝜑𝐶𝑉)
ip2di.5 (𝜑𝐷𝑉)
Assertion
Ref Expression
ip2di (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) (𝐵 , 𝐷)) ((𝐴 , 𝐷) (𝐵 , 𝐶))))

Proof of Theorem ip2di
StepHypRef Expression
1 ip2di.1 . . 3 (𝜑𝑊 ∈ PreHil)
2 ip2di.2 . . 3 (𝜑𝐴𝑉)
3 ip2di.3 . . 3 (𝜑𝐵𝑉)
4 phllmod 20344 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
51, 4syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
6 ip2di.4 . . . 4 (𝜑𝐶𝑉)
7 ip2di.5 . . . 4 (𝜑𝐷𝑉)
8 phllmhm.v . . . . 5 𝑉 = (Base‘𝑊)
9 ipdir.g . . . . 5 + = (+g𝑊)
108, 9lmodvacl 19240 . . . 4 ((𝑊 ∈ LMod ∧ 𝐶𝑉𝐷𝑉) → (𝐶 + 𝐷) ∈ 𝑉)
115, 6, 7, 10syl3anc 1494 . . 3 (𝜑 → (𝐶 + 𝐷) ∈ 𝑉)
12 phlsrng.f . . . 4 𝐹 = (Scalar‘𝑊)
13 phllmhm.h . . . 4 , = (·𝑖𝑊)
14 ipdir.p . . . 4 = (+g𝐹)
1512, 13, 8, 9, 14ipdir 20353 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉 ∧ (𝐶 + 𝐷) ∈ 𝑉)) → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = ((𝐴 , (𝐶 + 𝐷)) (𝐵 , (𝐶 + 𝐷))))
161, 2, 3, 11, 15syl13anc 1495 . 2 (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = ((𝐴 , (𝐶 + 𝐷)) (𝐵 , (𝐶 + 𝐷))))
1712, 13, 8, 9, 14ipdi 20354 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐶𝑉𝐷𝑉)) → (𝐴 , (𝐶 + 𝐷)) = ((𝐴 , 𝐶) (𝐴 , 𝐷)))
181, 2, 6, 7, 17syl13anc 1495 . . 3 (𝜑 → (𝐴 , (𝐶 + 𝐷)) = ((𝐴 , 𝐶) (𝐴 , 𝐷)))
1912, 13, 8, 9, 14ipdi 20354 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐵𝑉𝐶𝑉𝐷𝑉)) → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐶) (𝐵 , 𝐷)))
201, 3, 6, 7, 19syl13anc 1495 . . . 4 (𝜑 → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐶) (𝐵 , 𝐷)))
2112phlsrng 20345 . . . . . 6 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
22 srngring 19215 . . . . . 6 (𝐹 ∈ *-Ring → 𝐹 ∈ Ring)
23 ringcmn 18942 . . . . . 6 (𝐹 ∈ Ring → 𝐹 ∈ CMnd)
241, 21, 22, 234syl 19 . . . . 5 (𝜑𝐹 ∈ CMnd)
25 eqid 2825 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
2612, 13, 8, 25ipcl 20347 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐶𝑉) → (𝐵 , 𝐶) ∈ (Base‘𝐹))
271, 3, 6, 26syl3anc 1494 . . . . 5 (𝜑 → (𝐵 , 𝐶) ∈ (Base‘𝐹))
2812, 13, 8, 25ipcl 20347 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐷𝑉) → (𝐵 , 𝐷) ∈ (Base‘𝐹))
291, 3, 7, 28syl3anc 1494 . . . . 5 (𝜑 → (𝐵 , 𝐷) ∈ (Base‘𝐹))
3025, 14cmncom 18569 . . . . 5 ((𝐹 ∈ CMnd ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐷) ∈ (Base‘𝐹)) → ((𝐵 , 𝐶) (𝐵 , 𝐷)) = ((𝐵 , 𝐷) (𝐵 , 𝐶)))
3124, 27, 29, 30syl3anc 1494 . . . 4 (𝜑 → ((𝐵 , 𝐶) (𝐵 , 𝐷)) = ((𝐵 , 𝐷) (𝐵 , 𝐶)))
3220, 31eqtrd 2861 . . 3 (𝜑 → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐷) (𝐵 , 𝐶)))
3318, 32oveq12d 6928 . 2 (𝜑 → ((𝐴 , (𝐶 + 𝐷)) (𝐵 , (𝐶 + 𝐷))) = (((𝐴 , 𝐶) (𝐴 , 𝐷)) ((𝐵 , 𝐷) (𝐵 , 𝐶))))
3412, 13, 8, 25ipcl 20347 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐶𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹))
351, 2, 6, 34syl3anc 1494 . . 3 (𝜑 → (𝐴 , 𝐶) ∈ (Base‘𝐹))
3612, 13, 8, 25ipcl 20347 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐷𝑉) → (𝐴 , 𝐷) ∈ (Base‘𝐹))
371, 2, 7, 36syl3anc 1494 . . 3 (𝜑 → (𝐴 , 𝐷) ∈ (Base‘𝐹))
3825, 14cmn4 18572 . . 3 ((𝐹 ∈ CMnd ∧ ((𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐴 , 𝐷) ∈ (Base‘𝐹)) ∧ ((𝐵 , 𝐷) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹))) → (((𝐴 , 𝐶) (𝐴 , 𝐷)) ((𝐵 , 𝐷) (𝐵 , 𝐶))) = (((𝐴 , 𝐶) (𝐵 , 𝐷)) ((𝐴 , 𝐷) (𝐵 , 𝐶))))
3924, 35, 37, 29, 27, 38syl122anc 1502 . 2 (𝜑 → (((𝐴 , 𝐶) (𝐴 , 𝐷)) ((𝐵 , 𝐷) (𝐵 , 𝐶))) = (((𝐴 , 𝐶) (𝐵 , 𝐷)) ((𝐴 , 𝐷) (𝐵 , 𝐶))))
4016, 33, 393eqtrd 2865 1 (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) (𝐵 , 𝐷)) ((𝐴 , 𝐷) (𝐵 , 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1656  wcel 2164  cfv 6127  (class class class)co 6910  Basecbs 16229  +gcplusg 16312  Scalarcsca 16315  ·𝑖cip 16317  CMndccmn 18553  Ringcrg 18908  *-Ringcsr 19207  LModclmod 19226  PreHilcphl 20338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-tpos 7622  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-plusg 16325  df-mulr 16326  df-sca 16328  df-vsca 16329  df-ip 16330  df-0g 16462  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-mhm 17695  df-grp 17786  df-minusg 17787  df-ghm 18016  df-cmn 18555  df-abl 18556  df-mgp 18851  df-ur 18863  df-ring 18910  df-oppr 18984  df-rnghom 19078  df-staf 19208  df-srng 19209  df-lmod 19228  df-lmhm 19388  df-lvec 19469  df-sra 19540  df-rgmod 19541  df-phl 20340
This theorem is referenced by:  cph2di  23383
  Copyright terms: Public domain W3C validator