Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ip2di | Structured version Visualization version GIF version |
Description: Distributive law for inner product. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
ipdir.g | ⊢ + = (+g‘𝑊) |
ipdir.p | ⊢ ⨣ = (+g‘𝐹) |
ip2di.1 | ⊢ (𝜑 → 𝑊 ∈ PreHil) |
ip2di.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ip2di.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
ip2di.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
ip2di.5 | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
Ref | Expression |
---|---|
ip2di | ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ip2di.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ PreHil) | |
2 | ip2di.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | ip2di.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
4 | phllmod 20835 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
6 | ip2di.4 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
7 | ip2di.5 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
8 | phllmhm.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
9 | ipdir.g | . . . . 5 ⊢ + = (+g‘𝑊) | |
10 | 8, 9 | lmodvacl 20137 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (𝐶 + 𝐷) ∈ 𝑉) |
11 | 5, 6, 7, 10 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐷) ∈ 𝑉) |
12 | phlsrng.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
13 | phllmhm.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
14 | ipdir.p | . . . 4 ⊢ ⨣ = (+g‘𝐹) | |
15 | 12, 13, 8, 9, 14 | ipdir 20844 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ (𝐶 + 𝐷) ∈ 𝑉)) → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = ((𝐴 , (𝐶 + 𝐷)) ⨣ (𝐵 , (𝐶 + 𝐷)))) |
16 | 1, 2, 3, 11, 15 | syl13anc 1371 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = ((𝐴 , (𝐶 + 𝐷)) ⨣ (𝐵 , (𝐶 + 𝐷)))) |
17 | 12, 13, 8, 9, 14 | ipdi 20845 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐴 , (𝐶 + 𝐷)) = ((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷))) |
18 | 1, 2, 6, 7, 17 | syl13anc 1371 | . . 3 ⊢ (𝜑 → (𝐴 , (𝐶 + 𝐷)) = ((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷))) |
19 | 12, 13, 8, 9, 14 | ipdi 20845 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐶) ⨣ (𝐵 , 𝐷))) |
20 | 1, 3, 6, 7, 19 | syl13anc 1371 | . . . 4 ⊢ (𝜑 → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐶) ⨣ (𝐵 , 𝐷))) |
21 | 12 | phlsrng 20836 | . . . . . 6 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
22 | srngring 20112 | . . . . . 6 ⊢ (𝐹 ∈ *-Ring → 𝐹 ∈ Ring) | |
23 | ringcmn 19820 | . . . . . 6 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ CMnd) | |
24 | 1, 21, 22, 23 | 4syl 19 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ CMnd) |
25 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
26 | 12, 13, 8, 25 | ipcl 20838 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐵 , 𝐶) ∈ (Base‘𝐹)) |
27 | 1, 3, 6, 26 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝐵 , 𝐶) ∈ (Base‘𝐹)) |
28 | 12, 13, 8, 25 | ipcl 20838 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (𝐵 , 𝐷) ∈ (Base‘𝐹)) |
29 | 1, 3, 7, 28 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝐵 , 𝐷) ∈ (Base‘𝐹)) |
30 | 25, 14 | cmncom 19403 | . . . . 5 ⊢ ((𝐹 ∈ CMnd ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐷) ∈ (Base‘𝐹)) → ((𝐵 , 𝐶) ⨣ (𝐵 , 𝐷)) = ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) |
31 | 24, 27, 29, 30 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → ((𝐵 , 𝐶) ⨣ (𝐵 , 𝐷)) = ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) |
32 | 20, 31 | eqtrd 2778 | . . 3 ⊢ (𝜑 → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) |
33 | 18, 32 | oveq12d 7293 | . 2 ⊢ (𝜑 → ((𝐴 , (𝐶 + 𝐷)) ⨣ (𝐵 , (𝐶 + 𝐷))) = (((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷)) ⨣ ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
34 | 12, 13, 8, 25 | ipcl 20838 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹)) |
35 | 1, 2, 6, 34 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝐴 , 𝐶) ∈ (Base‘𝐹)) |
36 | 12, 13, 8, 25 | ipcl 20838 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (𝐴 , 𝐷) ∈ (Base‘𝐹)) |
37 | 1, 2, 7, 36 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝐴 , 𝐷) ∈ (Base‘𝐹)) |
38 | 25, 14 | cmn4 19406 | . . 3 ⊢ ((𝐹 ∈ CMnd ∧ ((𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐴 , 𝐷) ∈ (Base‘𝐹)) ∧ ((𝐵 , 𝐷) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹))) → (((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷)) ⨣ ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
39 | 24, 35, 37, 29, 27, 38 | syl122anc 1378 | . 2 ⊢ (𝜑 → (((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷)) ⨣ ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
40 | 16, 33, 39 | 3eqtrd 2782 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Scalarcsca 16965 ·𝑖cip 16967 CMndccmn 19386 Ringcrg 19783 *-Ringcsr 20104 LModclmod 20123 PreHilcphl 20829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-grp 18580 df-minusg 18581 df-ghm 18832 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-rnghom 19959 df-staf 20105 df-srng 20106 df-lmod 20125 df-lmhm 20284 df-lvec 20365 df-sra 20434 df-rgmod 20435 df-phl 20831 |
This theorem is referenced by: cph2di 24371 |
Copyright terms: Public domain | W3C validator |