| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ip2di | Structured version Visualization version GIF version | ||
| Description: Distributive law for inner product. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
| phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
| ipdir.g | ⊢ + = (+g‘𝑊) |
| ipdir.p | ⊢ ⨣ = (+g‘𝐹) |
| ip2di.1 | ⊢ (𝜑 → 𝑊 ∈ PreHil) |
| ip2di.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ip2di.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| ip2di.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| ip2di.5 | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| ip2di | ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip2di.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ PreHil) | |
| 2 | ip2di.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | ip2di.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 4 | phllmod 21546 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 6 | ip2di.4 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 7 | ip2di.5 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 8 | phllmhm.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 9 | ipdir.g | . . . . 5 ⊢ + = (+g‘𝑊) | |
| 10 | 8, 9 | lmodvacl 20788 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (𝐶 + 𝐷) ∈ 𝑉) |
| 11 | 5, 6, 7, 10 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐷) ∈ 𝑉) |
| 12 | phlsrng.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 13 | phllmhm.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
| 14 | ipdir.p | . . . 4 ⊢ ⨣ = (+g‘𝐹) | |
| 15 | 12, 13, 8, 9, 14 | ipdir 21555 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ (𝐶 + 𝐷) ∈ 𝑉)) → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = ((𝐴 , (𝐶 + 𝐷)) ⨣ (𝐵 , (𝐶 + 𝐷)))) |
| 16 | 1, 2, 3, 11, 15 | syl13anc 1374 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = ((𝐴 , (𝐶 + 𝐷)) ⨣ (𝐵 , (𝐶 + 𝐷)))) |
| 17 | 12, 13, 8, 9, 14 | ipdi 21556 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐴 , (𝐶 + 𝐷)) = ((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷))) |
| 18 | 1, 2, 6, 7, 17 | syl13anc 1374 | . . 3 ⊢ (𝜑 → (𝐴 , (𝐶 + 𝐷)) = ((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷))) |
| 19 | 12, 13, 8, 9, 14 | ipdi 21556 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐶) ⨣ (𝐵 , 𝐷))) |
| 20 | 1, 3, 6, 7, 19 | syl13anc 1374 | . . . 4 ⊢ (𝜑 → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐶) ⨣ (𝐵 , 𝐷))) |
| 21 | 12 | phlsrng 21547 | . . . . . 6 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
| 22 | srngring 20762 | . . . . . 6 ⊢ (𝐹 ∈ *-Ring → 𝐹 ∈ Ring) | |
| 23 | ringcmn 20198 | . . . . . 6 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ CMnd) | |
| 24 | 1, 21, 22, 23 | 4syl 19 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ CMnd) |
| 25 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 26 | 12, 13, 8, 25 | ipcl 21549 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐵 , 𝐶) ∈ (Base‘𝐹)) |
| 27 | 1, 3, 6, 26 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐵 , 𝐶) ∈ (Base‘𝐹)) |
| 28 | 12, 13, 8, 25 | ipcl 21549 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (𝐵 , 𝐷) ∈ (Base‘𝐹)) |
| 29 | 1, 3, 7, 28 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐵 , 𝐷) ∈ (Base‘𝐹)) |
| 30 | 25, 14 | cmncom 19735 | . . . . 5 ⊢ ((𝐹 ∈ CMnd ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐷) ∈ (Base‘𝐹)) → ((𝐵 , 𝐶) ⨣ (𝐵 , 𝐷)) = ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) |
| 31 | 24, 27, 29, 30 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝐵 , 𝐶) ⨣ (𝐵 , 𝐷)) = ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) |
| 32 | 20, 31 | eqtrd 2765 | . . 3 ⊢ (𝜑 → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) |
| 33 | 18, 32 | oveq12d 7408 | . 2 ⊢ (𝜑 → ((𝐴 , (𝐶 + 𝐷)) ⨣ (𝐵 , (𝐶 + 𝐷))) = (((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷)) ⨣ ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
| 34 | 12, 13, 8, 25 | ipcl 21549 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹)) |
| 35 | 1, 2, 6, 34 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐴 , 𝐶) ∈ (Base‘𝐹)) |
| 36 | 12, 13, 8, 25 | ipcl 21549 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (𝐴 , 𝐷) ∈ (Base‘𝐹)) |
| 37 | 1, 2, 7, 36 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐴 , 𝐷) ∈ (Base‘𝐹)) |
| 38 | 25, 14 | cmn4 19738 | . . 3 ⊢ ((𝐹 ∈ CMnd ∧ ((𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐴 , 𝐷) ∈ (Base‘𝐹)) ∧ ((𝐵 , 𝐷) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹))) → (((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷)) ⨣ ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
| 39 | 24, 35, 37, 29, 27, 38 | syl122anc 1381 | . 2 ⊢ (𝜑 → (((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷)) ⨣ ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
| 40 | 16, 33, 39 | 3eqtrd 2769 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 Scalarcsca 17230 ·𝑖cip 17232 CMndccmn 19717 Ringcrg 20149 *-Ringcsr 20754 LModclmod 20773 PreHilcphl 21540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-grp 18875 df-minusg 18876 df-ghm 19152 df-cmn 19719 df-abl 19720 df-mgp 20057 df-ur 20098 df-ring 20151 df-oppr 20253 df-rhm 20388 df-staf 20755 df-srng 20756 df-lmod 20775 df-lmhm 20936 df-lvec 21017 df-sra 21087 df-rgmod 21088 df-phl 21542 |
| This theorem is referenced by: cph2di 25114 |
| Copyright terms: Public domain | W3C validator |