MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2di Structured version   Visualization version   GIF version

Theorem ip2di 20768
Description: Distributive law for inner product. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipdir.g + = (+g𝑊)
ipdir.p = (+g𝐹)
ip2di.1 (𝜑𝑊 ∈ PreHil)
ip2di.2 (𝜑𝐴𝑉)
ip2di.3 (𝜑𝐵𝑉)
ip2di.4 (𝜑𝐶𝑉)
ip2di.5 (𝜑𝐷𝑉)
Assertion
Ref Expression
ip2di (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) (𝐵 , 𝐷)) ((𝐴 , 𝐷) (𝐵 , 𝐶))))

Proof of Theorem ip2di
StepHypRef Expression
1 ip2di.1 . . 3 (𝜑𝑊 ∈ PreHil)
2 ip2di.2 . . 3 (𝜑𝐴𝑉)
3 ip2di.3 . . 3 (𝜑𝐵𝑉)
4 phllmod 20757 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
51, 4syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
6 ip2di.4 . . . 4 (𝜑𝐶𝑉)
7 ip2di.5 . . . 4 (𝜑𝐷𝑉)
8 phllmhm.v . . . . 5 𝑉 = (Base‘𝑊)
9 ipdir.g . . . . 5 + = (+g𝑊)
108, 9lmodvacl 19631 . . . 4 ((𝑊 ∈ LMod ∧ 𝐶𝑉𝐷𝑉) → (𝐶 + 𝐷) ∈ 𝑉)
115, 6, 7, 10syl3anc 1367 . . 3 (𝜑 → (𝐶 + 𝐷) ∈ 𝑉)
12 phlsrng.f . . . 4 𝐹 = (Scalar‘𝑊)
13 phllmhm.h . . . 4 , = (·𝑖𝑊)
14 ipdir.p . . . 4 = (+g𝐹)
1512, 13, 8, 9, 14ipdir 20766 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉 ∧ (𝐶 + 𝐷) ∈ 𝑉)) → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = ((𝐴 , (𝐶 + 𝐷)) (𝐵 , (𝐶 + 𝐷))))
161, 2, 3, 11, 15syl13anc 1368 . 2 (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = ((𝐴 , (𝐶 + 𝐷)) (𝐵 , (𝐶 + 𝐷))))
1712, 13, 8, 9, 14ipdi 20767 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐶𝑉𝐷𝑉)) → (𝐴 , (𝐶 + 𝐷)) = ((𝐴 , 𝐶) (𝐴 , 𝐷)))
181, 2, 6, 7, 17syl13anc 1368 . . 3 (𝜑 → (𝐴 , (𝐶 + 𝐷)) = ((𝐴 , 𝐶) (𝐴 , 𝐷)))
1912, 13, 8, 9, 14ipdi 20767 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐵𝑉𝐶𝑉𝐷𝑉)) → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐶) (𝐵 , 𝐷)))
201, 3, 6, 7, 19syl13anc 1368 . . . 4 (𝜑 → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐶) (𝐵 , 𝐷)))
2112phlsrng 20758 . . . . . 6 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
22 srngring 19606 . . . . . 6 (𝐹 ∈ *-Ring → 𝐹 ∈ Ring)
23 ringcmn 19314 . . . . . 6 (𝐹 ∈ Ring → 𝐹 ∈ CMnd)
241, 21, 22, 234syl 19 . . . . 5 (𝜑𝐹 ∈ CMnd)
25 eqid 2821 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
2612, 13, 8, 25ipcl 20760 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐶𝑉) → (𝐵 , 𝐶) ∈ (Base‘𝐹))
271, 3, 6, 26syl3anc 1367 . . . . 5 (𝜑 → (𝐵 , 𝐶) ∈ (Base‘𝐹))
2812, 13, 8, 25ipcl 20760 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐷𝑉) → (𝐵 , 𝐷) ∈ (Base‘𝐹))
291, 3, 7, 28syl3anc 1367 . . . . 5 (𝜑 → (𝐵 , 𝐷) ∈ (Base‘𝐹))
3025, 14cmncom 18906 . . . . 5 ((𝐹 ∈ CMnd ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐷) ∈ (Base‘𝐹)) → ((𝐵 , 𝐶) (𝐵 , 𝐷)) = ((𝐵 , 𝐷) (𝐵 , 𝐶)))
3124, 27, 29, 30syl3anc 1367 . . . 4 (𝜑 → ((𝐵 , 𝐶) (𝐵 , 𝐷)) = ((𝐵 , 𝐷) (𝐵 , 𝐶)))
3220, 31eqtrd 2856 . . 3 (𝜑 → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐷) (𝐵 , 𝐶)))
3318, 32oveq12d 7160 . 2 (𝜑 → ((𝐴 , (𝐶 + 𝐷)) (𝐵 , (𝐶 + 𝐷))) = (((𝐴 , 𝐶) (𝐴 , 𝐷)) ((𝐵 , 𝐷) (𝐵 , 𝐶))))
3412, 13, 8, 25ipcl 20760 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐶𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹))
351, 2, 6, 34syl3anc 1367 . . 3 (𝜑 → (𝐴 , 𝐶) ∈ (Base‘𝐹))
3612, 13, 8, 25ipcl 20760 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐷𝑉) → (𝐴 , 𝐷) ∈ (Base‘𝐹))
371, 2, 7, 36syl3anc 1367 . . 3 (𝜑 → (𝐴 , 𝐷) ∈ (Base‘𝐹))
3825, 14cmn4 18909 . . 3 ((𝐹 ∈ CMnd ∧ ((𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐴 , 𝐷) ∈ (Base‘𝐹)) ∧ ((𝐵 , 𝐷) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹))) → (((𝐴 , 𝐶) (𝐴 , 𝐷)) ((𝐵 , 𝐷) (𝐵 , 𝐶))) = (((𝐴 , 𝐶) (𝐵 , 𝐷)) ((𝐴 , 𝐷) (𝐵 , 𝐶))))
3924, 35, 37, 29, 27, 38syl122anc 1375 . 2 (𝜑 → (((𝐴 , 𝐶) (𝐴 , 𝐷)) ((𝐵 , 𝐷) (𝐵 , 𝐶))) = (((𝐴 , 𝐶) (𝐵 , 𝐷)) ((𝐴 , 𝐷) (𝐵 , 𝐶))))
4016, 33, 393eqtrd 2860 1 (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) (𝐵 , 𝐷)) ((𝐴 , 𝐷) (𝐵 , 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cfv 6341  (class class class)co 7142  Basecbs 16466  +gcplusg 16548  Scalarcsca 16551  ·𝑖cip 16553  CMndccmn 18889  Ringcrg 19280  *-Ringcsr 19598  LModclmod 19617  PreHilcphl 20751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-tpos 7878  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-2 11687  df-3 11688  df-4 11689  df-5 11690  df-6 11691  df-7 11692  df-8 11693  df-ndx 16469  df-slot 16470  df-base 16472  df-sets 16473  df-plusg 16561  df-mulr 16562  df-sca 16564  df-vsca 16565  df-ip 16566  df-0g 16698  df-mgm 17835  df-sgrp 17884  df-mnd 17895  df-mhm 17939  df-grp 18089  df-minusg 18090  df-ghm 18339  df-cmn 18891  df-abl 18892  df-mgp 19223  df-ur 19235  df-ring 19282  df-oppr 19356  df-rnghom 19450  df-staf 19599  df-srng 19600  df-lmod 19619  df-lmhm 19777  df-lvec 19858  df-sra 19927  df-rgmod 19928  df-phl 20753
This theorem is referenced by:  cph2di  23794
  Copyright terms: Public domain W3C validator