| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ip2di | Structured version Visualization version GIF version | ||
| Description: Distributive law for inner product. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
| phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
| ipdir.g | ⊢ + = (+g‘𝑊) |
| ipdir.p | ⊢ ⨣ = (+g‘𝐹) |
| ip2di.1 | ⊢ (𝜑 → 𝑊 ∈ PreHil) |
| ip2di.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ip2di.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| ip2di.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| ip2di.5 | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| ip2di | ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip2di.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ PreHil) | |
| 2 | ip2di.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | ip2di.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 4 | phllmod 21567 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 6 | ip2di.4 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 7 | ip2di.5 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 8 | phllmhm.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 9 | ipdir.g | . . . . 5 ⊢ + = (+g‘𝑊) | |
| 10 | 8, 9 | lmodvacl 20808 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (𝐶 + 𝐷) ∈ 𝑉) |
| 11 | 5, 6, 7, 10 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐷) ∈ 𝑉) |
| 12 | phlsrng.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 13 | phllmhm.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
| 14 | ipdir.p | . . . 4 ⊢ ⨣ = (+g‘𝐹) | |
| 15 | 12, 13, 8, 9, 14 | ipdir 21576 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ (𝐶 + 𝐷) ∈ 𝑉)) → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = ((𝐴 , (𝐶 + 𝐷)) ⨣ (𝐵 , (𝐶 + 𝐷)))) |
| 16 | 1, 2, 3, 11, 15 | syl13anc 1374 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = ((𝐴 , (𝐶 + 𝐷)) ⨣ (𝐵 , (𝐶 + 𝐷)))) |
| 17 | 12, 13, 8, 9, 14 | ipdi 21577 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐴 , (𝐶 + 𝐷)) = ((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷))) |
| 18 | 1, 2, 6, 7, 17 | syl13anc 1374 | . . 3 ⊢ (𝜑 → (𝐴 , (𝐶 + 𝐷)) = ((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷))) |
| 19 | 12, 13, 8, 9, 14 | ipdi 21577 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐶) ⨣ (𝐵 , 𝐷))) |
| 20 | 1, 3, 6, 7, 19 | syl13anc 1374 | . . . 4 ⊢ (𝜑 → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐶) ⨣ (𝐵 , 𝐷))) |
| 21 | 12 | phlsrng 21568 | . . . . . 6 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
| 22 | srngring 20761 | . . . . . 6 ⊢ (𝐹 ∈ *-Ring → 𝐹 ∈ Ring) | |
| 23 | ringcmn 20200 | . . . . . 6 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ CMnd) | |
| 24 | 1, 21, 22, 23 | 4syl 19 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ CMnd) |
| 25 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 26 | 12, 13, 8, 25 | ipcl 21570 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐵 , 𝐶) ∈ (Base‘𝐹)) |
| 27 | 1, 3, 6, 26 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐵 , 𝐶) ∈ (Base‘𝐹)) |
| 28 | 12, 13, 8, 25 | ipcl 21570 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (𝐵 , 𝐷) ∈ (Base‘𝐹)) |
| 29 | 1, 3, 7, 28 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐵 , 𝐷) ∈ (Base‘𝐹)) |
| 30 | 25, 14 | cmncom 19710 | . . . . 5 ⊢ ((𝐹 ∈ CMnd ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐷) ∈ (Base‘𝐹)) → ((𝐵 , 𝐶) ⨣ (𝐵 , 𝐷)) = ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) |
| 31 | 24, 27, 29, 30 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝐵 , 𝐶) ⨣ (𝐵 , 𝐷)) = ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) |
| 32 | 20, 31 | eqtrd 2766 | . . 3 ⊢ (𝜑 → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) |
| 33 | 18, 32 | oveq12d 7364 | . 2 ⊢ (𝜑 → ((𝐴 , (𝐶 + 𝐷)) ⨣ (𝐵 , (𝐶 + 𝐷))) = (((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷)) ⨣ ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
| 34 | 12, 13, 8, 25 | ipcl 21570 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹)) |
| 35 | 1, 2, 6, 34 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐴 , 𝐶) ∈ (Base‘𝐹)) |
| 36 | 12, 13, 8, 25 | ipcl 21570 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (𝐴 , 𝐷) ∈ (Base‘𝐹)) |
| 37 | 1, 2, 7, 36 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐴 , 𝐷) ∈ (Base‘𝐹)) |
| 38 | 25, 14 | cmn4 19713 | . . 3 ⊢ ((𝐹 ∈ CMnd ∧ ((𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐴 , 𝐷) ∈ (Base‘𝐹)) ∧ ((𝐵 , 𝐷) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹))) → (((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷)) ⨣ ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
| 39 | 24, 35, 37, 29, 27, 38 | syl122anc 1381 | . 2 ⊢ (𝜑 → (((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷)) ⨣ ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
| 40 | 16, 33, 39 | 3eqtrd 2770 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 Scalarcsca 17164 ·𝑖cip 17166 CMndccmn 19692 Ringcrg 20151 *-Ringcsr 20753 LModclmod 20793 PreHilcphl 21561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-grp 18849 df-minusg 18850 df-ghm 19125 df-cmn 19694 df-abl 19695 df-mgp 20059 df-ur 20100 df-ring 20153 df-oppr 20255 df-rhm 20390 df-staf 20754 df-srng 20755 df-lmod 20795 df-lmhm 20956 df-lvec 21037 df-sra 21107 df-rgmod 21108 df-phl 21563 |
| This theorem is referenced by: cph2di 25134 |
| Copyright terms: Public domain | W3C validator |