| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ip2di | Structured version Visualization version GIF version | ||
| Description: Distributive law for inner product. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
| phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
| ipdir.g | ⊢ + = (+g‘𝑊) |
| ipdir.p | ⊢ ⨣ = (+g‘𝐹) |
| ip2di.1 | ⊢ (𝜑 → 𝑊 ∈ PreHil) |
| ip2di.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ip2di.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| ip2di.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| ip2di.5 | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| ip2di | ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip2di.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ PreHil) | |
| 2 | ip2di.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | ip2di.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 4 | phllmod 21603 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 6 | ip2di.4 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 7 | ip2di.5 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 8 | phllmhm.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 9 | ipdir.g | . . . . 5 ⊢ + = (+g‘𝑊) | |
| 10 | 8, 9 | lmodvacl 20842 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (𝐶 + 𝐷) ∈ 𝑉) |
| 11 | 5, 6, 7, 10 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐷) ∈ 𝑉) |
| 12 | phlsrng.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 13 | phllmhm.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
| 14 | ipdir.p | . . . 4 ⊢ ⨣ = (+g‘𝐹) | |
| 15 | 12, 13, 8, 9, 14 | ipdir 21612 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ (𝐶 + 𝐷) ∈ 𝑉)) → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = ((𝐴 , (𝐶 + 𝐷)) ⨣ (𝐵 , (𝐶 + 𝐷)))) |
| 16 | 1, 2, 3, 11, 15 | syl13anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = ((𝐴 , (𝐶 + 𝐷)) ⨣ (𝐵 , (𝐶 + 𝐷)))) |
| 17 | 12, 13, 8, 9, 14 | ipdi 21613 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐴 , (𝐶 + 𝐷)) = ((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷))) |
| 18 | 1, 2, 6, 7, 17 | syl13anc 1373 | . . 3 ⊢ (𝜑 → (𝐴 , (𝐶 + 𝐷)) = ((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷))) |
| 19 | 12, 13, 8, 9, 14 | ipdi 21613 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐶) ⨣ (𝐵 , 𝐷))) |
| 20 | 1, 3, 6, 7, 19 | syl13anc 1373 | . . . 4 ⊢ (𝜑 → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐶) ⨣ (𝐵 , 𝐷))) |
| 21 | 12 | phlsrng 21604 | . . . . . 6 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
| 22 | srngring 20816 | . . . . . 6 ⊢ (𝐹 ∈ *-Ring → 𝐹 ∈ Ring) | |
| 23 | ringcmn 20248 | . . . . . 6 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ CMnd) | |
| 24 | 1, 21, 22, 23 | 4syl 19 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ CMnd) |
| 25 | eqid 2734 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 26 | 12, 13, 8, 25 | ipcl 21606 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐵 , 𝐶) ∈ (Base‘𝐹)) |
| 27 | 1, 3, 6, 26 | syl3anc 1372 | . . . . 5 ⊢ (𝜑 → (𝐵 , 𝐶) ∈ (Base‘𝐹)) |
| 28 | 12, 13, 8, 25 | ipcl 21606 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (𝐵 , 𝐷) ∈ (Base‘𝐹)) |
| 29 | 1, 3, 7, 28 | syl3anc 1372 | . . . . 5 ⊢ (𝜑 → (𝐵 , 𝐷) ∈ (Base‘𝐹)) |
| 30 | 25, 14 | cmncom 19785 | . . . . 5 ⊢ ((𝐹 ∈ CMnd ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐷) ∈ (Base‘𝐹)) → ((𝐵 , 𝐶) ⨣ (𝐵 , 𝐷)) = ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) |
| 31 | 24, 27, 29, 30 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → ((𝐵 , 𝐶) ⨣ (𝐵 , 𝐷)) = ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) |
| 32 | 20, 31 | eqtrd 2769 | . . 3 ⊢ (𝜑 → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) |
| 33 | 18, 32 | oveq12d 7431 | . 2 ⊢ (𝜑 → ((𝐴 , (𝐶 + 𝐷)) ⨣ (𝐵 , (𝐶 + 𝐷))) = (((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷)) ⨣ ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
| 34 | 12, 13, 8, 25 | ipcl 21606 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹)) |
| 35 | 1, 2, 6, 34 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝐴 , 𝐶) ∈ (Base‘𝐹)) |
| 36 | 12, 13, 8, 25 | ipcl 21606 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (𝐴 , 𝐷) ∈ (Base‘𝐹)) |
| 37 | 1, 2, 7, 36 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝐴 , 𝐷) ∈ (Base‘𝐹)) |
| 38 | 25, 14 | cmn4 19788 | . . 3 ⊢ ((𝐹 ∈ CMnd ∧ ((𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐴 , 𝐷) ∈ (Base‘𝐹)) ∧ ((𝐵 , 𝐷) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹))) → (((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷)) ⨣ ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
| 39 | 24, 35, 37, 29, 27, 38 | syl122anc 1380 | . 2 ⊢ (𝜑 → (((𝐴 , 𝐶) ⨣ (𝐴 , 𝐷)) ⨣ ((𝐵 , 𝐷) ⨣ (𝐵 , 𝐶))) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
| 40 | 16, 33, 39 | 3eqtrd 2773 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 +gcplusg 17274 Scalarcsca 17277 ·𝑖cip 17279 CMndccmn 19767 Ringcrg 20199 *-Ringcsr 20808 LModclmod 20827 PreHilcphl 21597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-plusg 17287 df-mulr 17288 df-sca 17290 df-vsca 17291 df-ip 17292 df-0g 17458 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-grp 18924 df-minusg 18925 df-ghm 19201 df-cmn 19769 df-abl 19770 df-mgp 20107 df-ur 20148 df-ring 20201 df-oppr 20303 df-rhm 20441 df-staf 20809 df-srng 20810 df-lmod 20829 df-lmhm 20990 df-lvec 21071 df-sra 21141 df-rgmod 21142 df-phl 21599 |
| This theorem is referenced by: cph2di 25178 |
| Copyright terms: Public domain | W3C validator |