Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cphcjcl | Structured version Visualization version GIF version |
Description: The scalar field of a subcomplex pre-Hilbert space is closed under conjugation. (Contributed by Mario Carneiro, 11-Oct-2015.) |
Ref | Expression |
---|---|
cphsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cphsca.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
cphcjcl | ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (∗‘𝐴) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphsca.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | cphsca.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝐹) | |
3 | 1, 2 | cphsca 24343 | . . . . . 6 ⊢ (𝑊 ∈ ℂPreHil → 𝐹 = (ℂfld ↾s 𝐾)) |
4 | 3 | fveq2d 6778 | . . . . 5 ⊢ (𝑊 ∈ ℂPreHil → (*𝑟‘𝐹) = (*𝑟‘(ℂfld ↾s 𝐾))) |
5 | 2 | fvexi 6788 | . . . . . 6 ⊢ 𝐾 ∈ V |
6 | eqid 2738 | . . . . . . 7 ⊢ (ℂfld ↾s 𝐾) = (ℂfld ↾s 𝐾) | |
7 | cnfldcj 20604 | . . . . . . 7 ⊢ ∗ = (*𝑟‘ℂfld) | |
8 | 6, 7 | ressstarv 17018 | . . . . . 6 ⊢ (𝐾 ∈ V → ∗ = (*𝑟‘(ℂfld ↾s 𝐾))) |
9 | 5, 8 | ax-mp 5 | . . . . 5 ⊢ ∗ = (*𝑟‘(ℂfld ↾s 𝐾)) |
10 | 4, 9 | eqtr4di 2796 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → (*𝑟‘𝐹) = ∗) |
11 | 10 | adantr 481 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (*𝑟‘𝐹) = ∗) |
12 | 11 | fveq1d 6776 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → ((*𝑟‘𝐹)‘𝐴) = (∗‘𝐴)) |
13 | cphphl 24335 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
14 | 1 | phlsrng 20836 | . . . 4 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → 𝐹 ∈ *-Ring) |
16 | eqid 2738 | . . . 4 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
17 | 16, 2 | srngcl 20115 | . . 3 ⊢ ((𝐹 ∈ *-Ring ∧ 𝐴 ∈ 𝐾) → ((*𝑟‘𝐹)‘𝐴) ∈ 𝐾) |
18 | 15, 17 | sylan 580 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → ((*𝑟‘𝐹)‘𝐴) ∈ 𝐾) |
19 | 12, 18 | eqeltrrd 2840 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (∗‘𝐴) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ‘cfv 6433 (class class class)co 7275 ∗ccj 14807 Basecbs 16912 ↾s cress 16941 *𝑟cstv 16964 Scalarcsca 16965 *-Ringcsr 20104 ℂfldccnfld 20597 PreHilcphl 20829 ℂPreHilccph 24330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-cj 14810 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-0g 17152 df-mhm 18430 df-ghm 18832 df-mgp 19721 df-ur 19738 df-ring 19785 df-rnghom 19959 df-staf 20105 df-srng 20106 df-cnfld 20598 df-phl 20831 df-cph 24332 |
This theorem is referenced by: cphabscl 24349 |
Copyright terms: Public domain | W3C validator |