MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphcjcl Structured version   Visualization version   GIF version

Theorem cphcjcl 25090
Description: The scalar field of a subcomplex pre-Hilbert space is closed under conjugation. (Contributed by Mario Carneiro, 11-Oct-2015.)
Hypotheses
Ref Expression
cphsca.f 𝐹 = (Scalar‘𝑊)
cphsca.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphcjcl ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → (∗‘𝐴) ∈ 𝐾)

Proof of Theorem cphcjcl
StepHypRef Expression
1 cphsca.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
2 cphsca.k . . . . . . 7 𝐾 = (Base‘𝐹)
31, 2cphsca 25086 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝐹 = (ℂflds 𝐾))
43fveq2d 6865 . . . . 5 (𝑊 ∈ ℂPreHil → (*𝑟𝐹) = (*𝑟‘(ℂflds 𝐾)))
52fvexi 6875 . . . . . 6 𝐾 ∈ V
6 eqid 2730 . . . . . . 7 (ℂflds 𝐾) = (ℂflds 𝐾)
7 cnfldcj 21280 . . . . . . 7 ∗ = (*𝑟‘ℂfld)
86, 7ressstarv 17278 . . . . . 6 (𝐾 ∈ V → ∗ = (*𝑟‘(ℂflds 𝐾)))
95, 8ax-mp 5 . . . . 5 ∗ = (*𝑟‘(ℂflds 𝐾))
104, 9eqtr4di 2783 . . . 4 (𝑊 ∈ ℂPreHil → (*𝑟𝐹) = ∗)
1110adantr 480 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → (*𝑟𝐹) = ∗)
1211fveq1d 6863 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → ((*𝑟𝐹)‘𝐴) = (∗‘𝐴))
13 cphphl 25078 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
141phlsrng 21547 . . . 4 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
1513, 14syl 17 . . 3 (𝑊 ∈ ℂPreHil → 𝐹 ∈ *-Ring)
16 eqid 2730 . . . 4 (*𝑟𝐹) = (*𝑟𝐹)
1716, 2srngcl 20765 . . 3 ((𝐹 ∈ *-Ring ∧ 𝐴𝐾) → ((*𝑟𝐹)‘𝐴) ∈ 𝐾)
1815, 17sylan 580 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → ((*𝑟𝐹)‘𝐴) ∈ 𝐾)
1912, 18eqeltrrd 2830 1 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → (∗‘𝐴) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cfv 6514  (class class class)co 7390  ccj 15069  Basecbs 17186  s cress 17207  *𝑟cstv 17229  Scalarcsca 17230  *-Ringcsr 20754  fldccnfld 21271  PreHilcphl 21540  ℂPreHilccph 25073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-cj 15072  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-mhm 18717  df-ghm 19152  df-mgp 20057  df-ur 20098  df-ring 20151  df-rhm 20388  df-staf 20755  df-srng 20756  df-cnfld 21272  df-phl 21542  df-cph 25075
This theorem is referenced by:  cphabscl  25092
  Copyright terms: Public domain W3C validator