MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip0r Structured version   Visualization version   GIF version

Theorem ip0r 21562
Description: Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ip0l.z 𝑍 = (0g𝐹)
ip0l.o 0 = (0g𝑊)
Assertion
Ref Expression
ip0r ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → (𝐴 , 0 ) = 𝑍)

Proof of Theorem ip0r
StepHypRef Expression
1 phlsrng.f . . . 4 𝐹 = (Scalar‘𝑊)
2 phllmhm.h . . . 4 , = (·𝑖𝑊)
3 phllmhm.v . . . 4 𝑉 = (Base‘𝑊)
4 ip0l.z . . . 4 𝑍 = (0g𝐹)
5 ip0l.o . . . 4 0 = (0g𝑊)
61, 2, 3, 4, 5ip0l 21561 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ( 0 , 𝐴) = 𝑍)
76fveq2d 6830 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ((*𝑟𝐹)‘( 0 , 𝐴)) = ((*𝑟𝐹)‘𝑍))
8 phllmod 21555 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
98adantr 480 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → 𝑊 ∈ LMod)
103, 5lmod0vcl 20812 . . . 4 (𝑊 ∈ LMod → 0𝑉)
119, 10syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → 0𝑉)
12 eqid 2729 . . . . . 6 (*𝑟𝐹) = (*𝑟𝐹)
131, 2, 3, 12ipcj 21559 . . . . 5 ((𝑊 ∈ PreHil ∧ 0𝑉𝐴𝑉) → ((*𝑟𝐹)‘( 0 , 𝐴)) = (𝐴 , 0 ))
14133expa 1118 . . . 4 (((𝑊 ∈ PreHil ∧ 0𝑉) ∧ 𝐴𝑉) → ((*𝑟𝐹)‘( 0 , 𝐴)) = (𝐴 , 0 ))
1514an32s 652 . . 3 (((𝑊 ∈ PreHil ∧ 𝐴𝑉) ∧ 0𝑉) → ((*𝑟𝐹)‘( 0 , 𝐴)) = (𝐴 , 0 ))
1611, 15mpdan 687 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ((*𝑟𝐹)‘( 0 , 𝐴)) = (𝐴 , 0 ))
171phlsrng 21556 . . . 4 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
1817adantr 480 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → 𝐹 ∈ *-Ring)
1912, 4srng0 20757 . . 3 (𝐹 ∈ *-Ring → ((*𝑟𝐹)‘𝑍) = 𝑍)
2018, 19syl 17 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ((*𝑟𝐹)‘𝑍) = 𝑍)
217, 16, 203eqtr3d 2772 1 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → (𝐴 , 0 ) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  Basecbs 17138  *𝑟cstv 17181  Scalarcsca 17182  ·𝑖cip 17184  0gc0g 17361  *-Ringcsr 20741  LModclmod 20781  PreHilcphl 21549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-grp 18833  df-ghm 19110  df-mgp 20044  df-ur 20085  df-ring 20138  df-oppr 20240  df-rhm 20375  df-staf 20742  df-srng 20743  df-lmod 20783  df-lmhm 20944  df-lvec 21025  df-sra 21095  df-rgmod 21096  df-phl 21551
This theorem is referenced by:  cphip0r  25119  ipcau2  25150
  Copyright terms: Public domain W3C validator