![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ip0r | Structured version Visualization version GIF version |
Description: Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | β’ πΉ = (Scalarβπ) |
phllmhm.h | β’ , = (Β·πβπ) |
phllmhm.v | β’ π = (Baseβπ) |
ip0l.z | β’ π = (0gβπΉ) |
ip0l.o | β’ 0 = (0gβπ) |
Ref | Expression |
---|---|
ip0r | β’ ((π β PreHil β§ π΄ β π) β (π΄ , 0 ) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phlsrng.f | . . . 4 β’ πΉ = (Scalarβπ) | |
2 | phllmhm.h | . . . 4 β’ , = (Β·πβπ) | |
3 | phllmhm.v | . . . 4 β’ π = (Baseβπ) | |
4 | ip0l.z | . . . 4 β’ π = (0gβπΉ) | |
5 | ip0l.o | . . . 4 β’ 0 = (0gβπ) | |
6 | 1, 2, 3, 4, 5 | ip0l 21188 | . . 3 β’ ((π β PreHil β§ π΄ β π) β ( 0 , π΄) = π) |
7 | 6 | fveq2d 6895 | . 2 β’ ((π β PreHil β§ π΄ β π) β ((*πβπΉ)β( 0 , π΄)) = ((*πβπΉ)βπ)) |
8 | phllmod 21182 | . . . . 5 β’ (π β PreHil β π β LMod) | |
9 | 8 | adantr 481 | . . . 4 β’ ((π β PreHil β§ π΄ β π) β π β LMod) |
10 | 3, 5 | lmod0vcl 20500 | . . . 4 β’ (π β LMod β 0 β π) |
11 | 9, 10 | syl 17 | . . 3 β’ ((π β PreHil β§ π΄ β π) β 0 β π) |
12 | eqid 2732 | . . . . . 6 β’ (*πβπΉ) = (*πβπΉ) | |
13 | 1, 2, 3, 12 | ipcj 21186 | . . . . 5 β’ ((π β PreHil β§ 0 β π β§ π΄ β π) β ((*πβπΉ)β( 0 , π΄)) = (π΄ , 0 )) |
14 | 13 | 3expa 1118 | . . . 4 β’ (((π β PreHil β§ 0 β π) β§ π΄ β π) β ((*πβπΉ)β( 0 , π΄)) = (π΄ , 0 )) |
15 | 14 | an32s 650 | . . 3 β’ (((π β PreHil β§ π΄ β π) β§ 0 β π) β ((*πβπΉ)β( 0 , π΄)) = (π΄ , 0 )) |
16 | 11, 15 | mpdan 685 | . 2 β’ ((π β PreHil β§ π΄ β π) β ((*πβπΉ)β( 0 , π΄)) = (π΄ , 0 )) |
17 | 1 | phlsrng 21183 | . . . 4 β’ (π β PreHil β πΉ β *-Ring) |
18 | 17 | adantr 481 | . . 3 β’ ((π β PreHil β§ π΄ β π) β πΉ β *-Ring) |
19 | 12, 4 | srng0 20467 | . . 3 β’ (πΉ β *-Ring β ((*πβπΉ)βπ) = π) |
20 | 18, 19 | syl 17 | . 2 β’ ((π β PreHil β§ π΄ β π) β ((*πβπΉ)βπ) = π) |
21 | 7, 16, 20 | 3eqtr3d 2780 | 1 β’ ((π β PreHil β§ π΄ β π) β (π΄ , 0 ) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βcfv 6543 (class class class)co 7408 Basecbs 17143 *πcstv 17198 Scalarcsca 17199 Β·πcip 17201 0gc0g 17384 *-Ringcsr 20451 LModclmod 20470 PreHilcphl 21176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mhm 18670 df-grp 18821 df-ghm 19089 df-mgp 19987 df-ur 20004 df-ring 20057 df-oppr 20149 df-rnghom 20250 df-staf 20452 df-srng 20453 df-lmod 20472 df-lmhm 20632 df-lvec 20713 df-sra 20784 df-rgmod 20785 df-phl 21178 |
This theorem is referenced by: cphip0r 24719 ipcau2 24750 |
Copyright terms: Public domain | W3C validator |