![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ip0r | Structured version Visualization version GIF version |
Description: Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | β’ πΉ = (Scalarβπ) |
phllmhm.h | β’ , = (Β·πβπ) |
phllmhm.v | β’ π = (Baseβπ) |
ip0l.z | β’ π = (0gβπΉ) |
ip0l.o | β’ 0 = (0gβπ) |
Ref | Expression |
---|---|
ip0r | β’ ((π β PreHil β§ π΄ β π) β (π΄ , 0 ) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phlsrng.f | . . . 4 β’ πΉ = (Scalarβπ) | |
2 | phllmhm.h | . . . 4 β’ , = (Β·πβπ) | |
3 | phllmhm.v | . . . 4 β’ π = (Baseβπ) | |
4 | ip0l.z | . . . 4 β’ π = (0gβπΉ) | |
5 | ip0l.o | . . . 4 β’ 0 = (0gβπ) | |
6 | 1, 2, 3, 4, 5 | ip0l 21562 | . . 3 β’ ((π β PreHil β§ π΄ β π) β ( 0 , π΄) = π) |
7 | 6 | fveq2d 6896 | . 2 β’ ((π β PreHil β§ π΄ β π) β ((*πβπΉ)β( 0 , π΄)) = ((*πβπΉ)βπ)) |
8 | phllmod 21556 | . . . . 5 β’ (π β PreHil β π β LMod) | |
9 | 8 | adantr 480 | . . . 4 β’ ((π β PreHil β§ π΄ β π) β π β LMod) |
10 | 3, 5 | lmod0vcl 20768 | . . . 4 β’ (π β LMod β 0 β π) |
11 | 9, 10 | syl 17 | . . 3 β’ ((π β PreHil β§ π΄ β π) β 0 β π) |
12 | eqid 2728 | . . . . . 6 β’ (*πβπΉ) = (*πβπΉ) | |
13 | 1, 2, 3, 12 | ipcj 21560 | . . . . 5 β’ ((π β PreHil β§ 0 β π β§ π΄ β π) β ((*πβπΉ)β( 0 , π΄)) = (π΄ , 0 )) |
14 | 13 | 3expa 1116 | . . . 4 β’ (((π β PreHil β§ 0 β π) β§ π΄ β π) β ((*πβπΉ)β( 0 , π΄)) = (π΄ , 0 )) |
15 | 14 | an32s 651 | . . 3 β’ (((π β PreHil β§ π΄ β π) β§ 0 β π) β ((*πβπΉ)β( 0 , π΄)) = (π΄ , 0 )) |
16 | 11, 15 | mpdan 686 | . 2 β’ ((π β PreHil β§ π΄ β π) β ((*πβπΉ)β( 0 , π΄)) = (π΄ , 0 )) |
17 | 1 | phlsrng 21557 | . . . 4 β’ (π β PreHil β πΉ β *-Ring) |
18 | 17 | adantr 480 | . . 3 β’ ((π β PreHil β§ π΄ β π) β πΉ β *-Ring) |
19 | 12, 4 | srng0 20734 | . . 3 β’ (πΉ β *-Ring β ((*πβπΉ)βπ) = π) |
20 | 18, 19 | syl 17 | . 2 β’ ((π β PreHil β§ π΄ β π) β ((*πβπΉ)βπ) = π) |
21 | 7, 16, 20 | 3eqtr3d 2776 | 1 β’ ((π β PreHil β§ π΄ β π) β (π΄ , 0 ) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 βcfv 6543 (class class class)co 7415 Basecbs 17174 *πcstv 17229 Scalarcsca 17230 Β·πcip 17232 0gc0g 17415 *-Ringcsr 20718 LModclmod 20737 PreHilcphl 21550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-2nd 7989 df-tpos 8226 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-er 8719 df-map 8841 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-0g 17417 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-mhm 18734 df-grp 18887 df-ghm 19162 df-mgp 20069 df-ur 20116 df-ring 20169 df-oppr 20267 df-rhm 20405 df-staf 20719 df-srng 20720 df-lmod 20739 df-lmhm 20901 df-lvec 20982 df-sra 21052 df-rgmod 21053 df-phl 21552 |
This theorem is referenced by: cphip0r 25125 ipcau2 25156 |
Copyright terms: Public domain | W3C validator |