Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ipdi | Structured version Visualization version GIF version |
Description: Distributive law for inner product (left-distributivity). (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
ipdir.g | ⊢ + = (+g‘𝑊) |
ipdir.p | ⊢ ⨣ = (+g‘𝐹) |
Ref | Expression |
---|---|
ipdi | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 + 𝐶)) = ((𝐴 , 𝐵) ⨣ (𝐴 , 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ PreHil) | |
2 | simpr2 1194 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
3 | simpr3 1195 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
4 | simpr1 1193 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝑉) | |
5 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | phllmhm.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
7 | phllmhm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
8 | ipdir.g | . . . . . 6 ⊢ + = (+g‘𝑊) | |
9 | ipdir.p | . . . . . 6 ⊢ ⨣ = (+g‘𝐹) | |
10 | 5, 6, 7, 8, 9 | ipdir 20950 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉)) → ((𝐵 + 𝐶) , 𝐴) = ((𝐵 , 𝐴) ⨣ (𝐶 , 𝐴))) |
11 | 1, 2, 3, 4, 10 | syl13anc 1371 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐵 + 𝐶) , 𝐴) = ((𝐵 , 𝐴) ⨣ (𝐶 , 𝐴))) |
12 | 11 | fveq2d 6829 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘((𝐵 + 𝐶) , 𝐴)) = ((*𝑟‘𝐹)‘((𝐵 , 𝐴) ⨣ (𝐶 , 𝐴)))) |
13 | 5 | phlsrng 20942 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
14 | 13 | adantr 481 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐹 ∈ *-Ring) |
15 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
16 | 5, 6, 7, 15 | ipcl 20944 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐵 , 𝐴) ∈ (Base‘𝐹)) |
17 | 1, 2, 4, 16 | syl3anc 1370 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 , 𝐴) ∈ (Base‘𝐹)) |
18 | 5, 6, 7, 15 | ipcl 20944 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐶 , 𝐴) ∈ (Base‘𝐹)) |
19 | 1, 3, 4, 18 | syl3anc 1370 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐶 , 𝐴) ∈ (Base‘𝐹)) |
20 | eqid 2736 | . . . . 5 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
21 | 20, 15, 9 | srngadd 20223 | . . . 4 ⊢ ((𝐹 ∈ *-Ring ∧ (𝐵 , 𝐴) ∈ (Base‘𝐹) ∧ (𝐶 , 𝐴) ∈ (Base‘𝐹)) → ((*𝑟‘𝐹)‘((𝐵 , 𝐴) ⨣ (𝐶 , 𝐴))) = (((*𝑟‘𝐹)‘(𝐵 , 𝐴)) ⨣ ((*𝑟‘𝐹)‘(𝐶 , 𝐴)))) |
22 | 14, 17, 19, 21 | syl3anc 1370 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘((𝐵 , 𝐴) ⨣ (𝐶 , 𝐴))) = (((*𝑟‘𝐹)‘(𝐵 , 𝐴)) ⨣ ((*𝑟‘𝐹)‘(𝐶 , 𝐴)))) |
23 | 12, 22 | eqtrd 2776 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘((𝐵 + 𝐶) , 𝐴)) = (((*𝑟‘𝐹)‘(𝐵 , 𝐴)) ⨣ ((*𝑟‘𝐹)‘(𝐶 , 𝐴)))) |
24 | phllmod 20941 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
25 | 24 | adantr 481 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ LMod) |
26 | 7, 8 | lmodvacl 20243 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐵 + 𝐶) ∈ 𝑉) |
27 | 25, 2, 3, 26 | syl3anc 1370 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 + 𝐶) ∈ 𝑉) |
28 | 5, 6, 7, 20 | ipcj 20945 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐵 + 𝐶) ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ((*𝑟‘𝐹)‘((𝐵 + 𝐶) , 𝐴)) = (𝐴 , (𝐵 + 𝐶))) |
29 | 1, 27, 4, 28 | syl3anc 1370 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘((𝐵 + 𝐶) , 𝐴)) = (𝐴 , (𝐵 + 𝐶))) |
30 | 5, 6, 7, 20 | ipcj 20945 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝐵 , 𝐴)) = (𝐴 , 𝐵)) |
31 | 1, 2, 4, 30 | syl3anc 1370 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘(𝐵 , 𝐴)) = (𝐴 , 𝐵)) |
32 | 5, 6, 7, 20 | ipcj 20945 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝐶 , 𝐴)) = (𝐴 , 𝐶)) |
33 | 1, 3, 4, 32 | syl3anc 1370 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘(𝐶 , 𝐴)) = (𝐴 , 𝐶)) |
34 | 31, 33 | oveq12d 7355 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((*𝑟‘𝐹)‘(𝐵 , 𝐴)) ⨣ ((*𝑟‘𝐹)‘(𝐶 , 𝐴))) = ((𝐴 , 𝐵) ⨣ (𝐴 , 𝐶))) |
35 | 23, 29, 34 | 3eqtr3d 2784 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 + 𝐶)) = ((𝐴 , 𝐵) ⨣ (𝐴 , 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ‘cfv 6479 (class class class)co 7337 Basecbs 17009 +gcplusg 17059 *𝑟cstv 17061 Scalarcsca 17062 ·𝑖cip 17064 *-Ringcsr 20210 LModclmod 20229 PreHilcphl 20935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-2nd 7900 df-tpos 8112 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-map 8688 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-plusg 17072 df-mulr 17073 df-sca 17075 df-vsca 17076 df-ip 17077 df-0g 17249 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-mhm 18527 df-grp 18676 df-ghm 18928 df-mgp 19816 df-ur 19833 df-ring 19880 df-oppr 19957 df-rnghom 20054 df-staf 20211 df-srng 20212 df-lmod 20231 df-lmhm 20390 df-lvec 20471 df-sra 20540 df-rgmod 20541 df-phl 20937 |
This theorem is referenced by: ip2di 20952 ipsubdi 20954 cphdi 24476 |
Copyright terms: Public domain | W3C validator |