MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipdi Structured version   Visualization version   GIF version

Theorem ipdi 20333
Description: Distributive law for inner product (left-distributivity). (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipdir.g + = (+g𝑊)
ipdir.p = (+g𝐹)
Assertion
Ref Expression
ipdi ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , (𝐵 + 𝐶)) = ((𝐴 , 𝐵) (𝐴 , 𝐶)))

Proof of Theorem ipdi
StepHypRef Expression
1 simpl 486 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ PreHil)
2 simpr2 1192 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
3 simpr3 1193 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
4 simpr1 1191 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐴𝑉)
5 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
6 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
7 phllmhm.v . . . . . 6 𝑉 = (Base‘𝑊)
8 ipdir.g . . . . . 6 + = (+g𝑊)
9 ipdir.p . . . . . 6 = (+g𝐹)
105, 6, 7, 8, 9ipdir 20332 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐵𝑉𝐶𝑉𝐴𝑉)) → ((𝐵 + 𝐶) , 𝐴) = ((𝐵 , 𝐴) (𝐶 , 𝐴)))
111, 2, 3, 4, 10syl13anc 1369 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐵 + 𝐶) , 𝐴) = ((𝐵 , 𝐴) (𝐶 , 𝐴)))
1211fveq2d 6653 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((*𝑟𝐹)‘((𝐵 + 𝐶) , 𝐴)) = ((*𝑟𝐹)‘((𝐵 , 𝐴) (𝐶 , 𝐴))))
135phlsrng 20324 . . . . 5 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
1413adantr 484 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐹 ∈ *-Ring)
15 eqid 2801 . . . . . 6 (Base‘𝐹) = (Base‘𝐹)
165, 6, 7, 15ipcl 20326 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐴𝑉) → (𝐵 , 𝐴) ∈ (Base‘𝐹))
171, 2, 4, 16syl3anc 1368 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐵 , 𝐴) ∈ (Base‘𝐹))
185, 6, 7, 15ipcl 20326 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐶𝑉𝐴𝑉) → (𝐶 , 𝐴) ∈ (Base‘𝐹))
191, 3, 4, 18syl3anc 1368 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐶 , 𝐴) ∈ (Base‘𝐹))
20 eqid 2801 . . . . 5 (*𝑟𝐹) = (*𝑟𝐹)
2120, 15, 9srngadd 19625 . . . 4 ((𝐹 ∈ *-Ring ∧ (𝐵 , 𝐴) ∈ (Base‘𝐹) ∧ (𝐶 , 𝐴) ∈ (Base‘𝐹)) → ((*𝑟𝐹)‘((𝐵 , 𝐴) (𝐶 , 𝐴))) = (((*𝑟𝐹)‘(𝐵 , 𝐴)) ((*𝑟𝐹)‘(𝐶 , 𝐴))))
2214, 17, 19, 21syl3anc 1368 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((*𝑟𝐹)‘((𝐵 , 𝐴) (𝐶 , 𝐴))) = (((*𝑟𝐹)‘(𝐵 , 𝐴)) ((*𝑟𝐹)‘(𝐶 , 𝐴))))
2312, 22eqtrd 2836 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((*𝑟𝐹)‘((𝐵 + 𝐶) , 𝐴)) = (((*𝑟𝐹)‘(𝐵 , 𝐴)) ((*𝑟𝐹)‘(𝐶 , 𝐴))))
24 phllmod 20323 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
2524adantr 484 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ LMod)
267, 8lmodvacl 19645 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝑉𝐶𝑉) → (𝐵 + 𝐶) ∈ 𝑉)
2725, 2, 3, 26syl3anc 1368 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐵 + 𝐶) ∈ 𝑉)
285, 6, 7, 20ipcj 20327 . . 3 ((𝑊 ∈ PreHil ∧ (𝐵 + 𝐶) ∈ 𝑉𝐴𝑉) → ((*𝑟𝐹)‘((𝐵 + 𝐶) , 𝐴)) = (𝐴 , (𝐵 + 𝐶)))
291, 27, 4, 28syl3anc 1368 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((*𝑟𝐹)‘((𝐵 + 𝐶) , 𝐴)) = (𝐴 , (𝐵 + 𝐶)))
305, 6, 7, 20ipcj 20327 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐴𝑉) → ((*𝑟𝐹)‘(𝐵 , 𝐴)) = (𝐴 , 𝐵))
311, 2, 4, 30syl3anc 1368 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((*𝑟𝐹)‘(𝐵 , 𝐴)) = (𝐴 , 𝐵))
325, 6, 7, 20ipcj 20327 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐶𝑉𝐴𝑉) → ((*𝑟𝐹)‘(𝐶 , 𝐴)) = (𝐴 , 𝐶))
331, 3, 4, 32syl3anc 1368 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((*𝑟𝐹)‘(𝐶 , 𝐴)) = (𝐴 , 𝐶))
3431, 33oveq12d 7157 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((*𝑟𝐹)‘(𝐵 , 𝐴)) ((*𝑟𝐹)‘(𝐶 , 𝐴))) = ((𝐴 , 𝐵) (𝐴 , 𝐶)))
3523, 29, 343eqtr3d 2844 1 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , (𝐵 + 𝐶)) = ((𝐴 , 𝐵) (𝐴 , 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  cfv 6328  (class class class)co 7139  Basecbs 16479  +gcplusg 16561  *𝑟cstv 16563  Scalarcsca 16564  ·𝑖cip 16566  *-Ringcsr 19612  LModclmod 19631  PreHilcphl 20317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-ip 16579  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-mhm 17952  df-grp 18102  df-ghm 18352  df-mgp 19237  df-ur 19249  df-ring 19296  df-oppr 19373  df-rnghom 19467  df-staf 19613  df-srng 19614  df-lmod 19633  df-lmhm 19791  df-lvec 19872  df-sra 19941  df-rgmod 19942  df-phl 20319
This theorem is referenced by:  ip2di  20334  ipsubdi  20336  cphdi  23815
  Copyright terms: Public domain W3C validator