MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipdi Structured version   Visualization version   GIF version

Theorem ipdi 20556
Description: Distributive law for inner product (left-distributivity). (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipdir.g + = (+g𝑊)
ipdir.p = (+g𝐹)
Assertion
Ref Expression
ipdi ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , (𝐵 + 𝐶)) = ((𝐴 , 𝐵) (𝐴 , 𝐶)))

Proof of Theorem ipdi
StepHypRef Expression
1 simpl 486 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ PreHil)
2 simpr2 1197 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
3 simpr3 1198 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
4 simpr1 1196 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐴𝑉)
5 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
6 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
7 phllmhm.v . . . . . 6 𝑉 = (Base‘𝑊)
8 ipdir.g . . . . . 6 + = (+g𝑊)
9 ipdir.p . . . . . 6 = (+g𝐹)
105, 6, 7, 8, 9ipdir 20555 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐵𝑉𝐶𝑉𝐴𝑉)) → ((𝐵 + 𝐶) , 𝐴) = ((𝐵 , 𝐴) (𝐶 , 𝐴)))
111, 2, 3, 4, 10syl13anc 1374 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐵 + 𝐶) , 𝐴) = ((𝐵 , 𝐴) (𝐶 , 𝐴)))
1211fveq2d 6699 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((*𝑟𝐹)‘((𝐵 + 𝐶) , 𝐴)) = ((*𝑟𝐹)‘((𝐵 , 𝐴) (𝐶 , 𝐴))))
135phlsrng 20547 . . . . 5 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
1413adantr 484 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐹 ∈ *-Ring)
15 eqid 2736 . . . . . 6 (Base‘𝐹) = (Base‘𝐹)
165, 6, 7, 15ipcl 20549 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐴𝑉) → (𝐵 , 𝐴) ∈ (Base‘𝐹))
171, 2, 4, 16syl3anc 1373 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐵 , 𝐴) ∈ (Base‘𝐹))
185, 6, 7, 15ipcl 20549 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐶𝑉𝐴𝑉) → (𝐶 , 𝐴) ∈ (Base‘𝐹))
191, 3, 4, 18syl3anc 1373 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐶 , 𝐴) ∈ (Base‘𝐹))
20 eqid 2736 . . . . 5 (*𝑟𝐹) = (*𝑟𝐹)
2120, 15, 9srngadd 19847 . . . 4 ((𝐹 ∈ *-Ring ∧ (𝐵 , 𝐴) ∈ (Base‘𝐹) ∧ (𝐶 , 𝐴) ∈ (Base‘𝐹)) → ((*𝑟𝐹)‘((𝐵 , 𝐴) (𝐶 , 𝐴))) = (((*𝑟𝐹)‘(𝐵 , 𝐴)) ((*𝑟𝐹)‘(𝐶 , 𝐴))))
2214, 17, 19, 21syl3anc 1373 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((*𝑟𝐹)‘((𝐵 , 𝐴) (𝐶 , 𝐴))) = (((*𝑟𝐹)‘(𝐵 , 𝐴)) ((*𝑟𝐹)‘(𝐶 , 𝐴))))
2312, 22eqtrd 2771 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((*𝑟𝐹)‘((𝐵 + 𝐶) , 𝐴)) = (((*𝑟𝐹)‘(𝐵 , 𝐴)) ((*𝑟𝐹)‘(𝐶 , 𝐴))))
24 phllmod 20546 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
2524adantr 484 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ LMod)
267, 8lmodvacl 19867 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝑉𝐶𝑉) → (𝐵 + 𝐶) ∈ 𝑉)
2725, 2, 3, 26syl3anc 1373 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐵 + 𝐶) ∈ 𝑉)
285, 6, 7, 20ipcj 20550 . . 3 ((𝑊 ∈ PreHil ∧ (𝐵 + 𝐶) ∈ 𝑉𝐴𝑉) → ((*𝑟𝐹)‘((𝐵 + 𝐶) , 𝐴)) = (𝐴 , (𝐵 + 𝐶)))
291, 27, 4, 28syl3anc 1373 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((*𝑟𝐹)‘((𝐵 + 𝐶) , 𝐴)) = (𝐴 , (𝐵 + 𝐶)))
305, 6, 7, 20ipcj 20550 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐴𝑉) → ((*𝑟𝐹)‘(𝐵 , 𝐴)) = (𝐴 , 𝐵))
311, 2, 4, 30syl3anc 1373 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((*𝑟𝐹)‘(𝐵 , 𝐴)) = (𝐴 , 𝐵))
325, 6, 7, 20ipcj 20550 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐶𝑉𝐴𝑉) → ((*𝑟𝐹)‘(𝐶 , 𝐴)) = (𝐴 , 𝐶))
331, 3, 4, 32syl3anc 1373 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((*𝑟𝐹)‘(𝐶 , 𝐴)) = (𝐴 , 𝐶))
3431, 33oveq12d 7209 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((*𝑟𝐹)‘(𝐵 , 𝐴)) ((*𝑟𝐹)‘(𝐶 , 𝐴))) = ((𝐴 , 𝐵) (𝐴 , 𝐶)))
3523, 29, 343eqtr3d 2779 1 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , (𝐵 + 𝐶)) = ((𝐴 , 𝐵) (𝐴 , 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  cfv 6358  (class class class)co 7191  Basecbs 16666  +gcplusg 16749  *𝑟cstv 16751  Scalarcsca 16752  ·𝑖cip 16754  *-Ringcsr 19834  LModclmod 19853  PreHilcphl 20540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-tpos 7946  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-plusg 16762  df-mulr 16763  df-sca 16765  df-vsca 16766  df-ip 16767  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mhm 18172  df-grp 18322  df-ghm 18574  df-mgp 19459  df-ur 19471  df-ring 19518  df-oppr 19595  df-rnghom 19689  df-staf 19835  df-srng 19836  df-lmod 19855  df-lmhm 20013  df-lvec 20094  df-sra 20163  df-rgmod 20164  df-phl 20542
This theorem is referenced by:  ip2di  20557  ipsubdi  20559  cphdi  24057
  Copyright terms: Public domain W3C validator