MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipdi Structured version   Visualization version   GIF version

Theorem ipdi 20784
Description: Distributive law for inner product (left-distributivity). (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipdir.g + = (+g𝑊)
ipdir.p = (+g𝐹)
Assertion
Ref Expression
ipdi ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , (𝐵 + 𝐶)) = ((𝐴 , 𝐵) (𝐴 , 𝐶)))

Proof of Theorem ipdi
StepHypRef Expression
1 simpl 485 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ PreHil)
2 simpr2 1191 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
3 simpr3 1192 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
4 simpr1 1190 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐴𝑉)
5 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
6 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
7 phllmhm.v . . . . . 6 𝑉 = (Base‘𝑊)
8 ipdir.g . . . . . 6 + = (+g𝑊)
9 ipdir.p . . . . . 6 = (+g𝐹)
105, 6, 7, 8, 9ipdir 20783 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐵𝑉𝐶𝑉𝐴𝑉)) → ((𝐵 + 𝐶) , 𝐴) = ((𝐵 , 𝐴) (𝐶 , 𝐴)))
111, 2, 3, 4, 10syl13anc 1368 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐵 + 𝐶) , 𝐴) = ((𝐵 , 𝐴) (𝐶 , 𝐴)))
1211fveq2d 6674 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((*𝑟𝐹)‘((𝐵 + 𝐶) , 𝐴)) = ((*𝑟𝐹)‘((𝐵 , 𝐴) (𝐶 , 𝐴))))
135phlsrng 20775 . . . . 5 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
1413adantr 483 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐹 ∈ *-Ring)
15 eqid 2821 . . . . . 6 (Base‘𝐹) = (Base‘𝐹)
165, 6, 7, 15ipcl 20777 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐴𝑉) → (𝐵 , 𝐴) ∈ (Base‘𝐹))
171, 2, 4, 16syl3anc 1367 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐵 , 𝐴) ∈ (Base‘𝐹))
185, 6, 7, 15ipcl 20777 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐶𝑉𝐴𝑉) → (𝐶 , 𝐴) ∈ (Base‘𝐹))
191, 3, 4, 18syl3anc 1367 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐶 , 𝐴) ∈ (Base‘𝐹))
20 eqid 2821 . . . . 5 (*𝑟𝐹) = (*𝑟𝐹)
2120, 15, 9srngadd 19628 . . . 4 ((𝐹 ∈ *-Ring ∧ (𝐵 , 𝐴) ∈ (Base‘𝐹) ∧ (𝐶 , 𝐴) ∈ (Base‘𝐹)) → ((*𝑟𝐹)‘((𝐵 , 𝐴) (𝐶 , 𝐴))) = (((*𝑟𝐹)‘(𝐵 , 𝐴)) ((*𝑟𝐹)‘(𝐶 , 𝐴))))
2214, 17, 19, 21syl3anc 1367 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((*𝑟𝐹)‘((𝐵 , 𝐴) (𝐶 , 𝐴))) = (((*𝑟𝐹)‘(𝐵 , 𝐴)) ((*𝑟𝐹)‘(𝐶 , 𝐴))))
2312, 22eqtrd 2856 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((*𝑟𝐹)‘((𝐵 + 𝐶) , 𝐴)) = (((*𝑟𝐹)‘(𝐵 , 𝐴)) ((*𝑟𝐹)‘(𝐶 , 𝐴))))
24 phllmod 20774 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
2524adantr 483 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ LMod)
267, 8lmodvacl 19648 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝑉𝐶𝑉) → (𝐵 + 𝐶) ∈ 𝑉)
2725, 2, 3, 26syl3anc 1367 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐵 + 𝐶) ∈ 𝑉)
285, 6, 7, 20ipcj 20778 . . 3 ((𝑊 ∈ PreHil ∧ (𝐵 + 𝐶) ∈ 𝑉𝐴𝑉) → ((*𝑟𝐹)‘((𝐵 + 𝐶) , 𝐴)) = (𝐴 , (𝐵 + 𝐶)))
291, 27, 4, 28syl3anc 1367 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((*𝑟𝐹)‘((𝐵 + 𝐶) , 𝐴)) = (𝐴 , (𝐵 + 𝐶)))
305, 6, 7, 20ipcj 20778 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐴𝑉) → ((*𝑟𝐹)‘(𝐵 , 𝐴)) = (𝐴 , 𝐵))
311, 2, 4, 30syl3anc 1367 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((*𝑟𝐹)‘(𝐵 , 𝐴)) = (𝐴 , 𝐵))
325, 6, 7, 20ipcj 20778 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐶𝑉𝐴𝑉) → ((*𝑟𝐹)‘(𝐶 , 𝐴)) = (𝐴 , 𝐶))
331, 3, 4, 32syl3anc 1367 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((*𝑟𝐹)‘(𝐶 , 𝐴)) = (𝐴 , 𝐶))
3431, 33oveq12d 7174 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((*𝑟𝐹)‘(𝐵 , 𝐴)) ((*𝑟𝐹)‘(𝐶 , 𝐴))) = ((𝐴 , 𝐵) (𝐴 , 𝐶)))
3523, 29, 343eqtr3d 2864 1 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , (𝐵 + 𝐶)) = ((𝐴 , 𝐵) (𝐴 , 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  *𝑟cstv 16567  Scalarcsca 16568  ·𝑖cip 16570  *-Ringcsr 19615  LModclmod 19634  PreHilcphl 20768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-ghm 18356  df-mgp 19240  df-ur 19252  df-ring 19299  df-oppr 19373  df-rnghom 19467  df-staf 19616  df-srng 19617  df-lmod 19636  df-lmhm 19794  df-lvec 19875  df-sra 19944  df-rgmod 19945  df-phl 20770
This theorem is referenced by:  ip2di  20785  ipsubdi  20787  cphdi  23810
  Copyright terms: Public domain W3C validator