![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipdi | Structured version Visualization version GIF version |
Description: Distributive law for inner product (left-distributivity). (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
ipdir.g | ⊢ + = (+g‘𝑊) |
ipdir.p | ⊢ ⨣ = (+g‘𝐹) |
Ref | Expression |
---|---|
ipdi | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 + 𝐶)) = ((𝐴 , 𝐵) ⨣ (𝐴 , 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ PreHil) | |
2 | simpr2 1192 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
3 | simpr3 1193 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
4 | simpr1 1191 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝑉) | |
5 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | phllmhm.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
7 | phllmhm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
8 | ipdir.g | . . . . . 6 ⊢ + = (+g‘𝑊) | |
9 | ipdir.p | . . . . . 6 ⊢ ⨣ = (+g‘𝐹) | |
10 | 5, 6, 7, 8, 9 | ipdir 21637 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉)) → ((𝐵 + 𝐶) , 𝐴) = ((𝐵 , 𝐴) ⨣ (𝐶 , 𝐴))) |
11 | 1, 2, 3, 4, 10 | syl13anc 1369 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐵 + 𝐶) , 𝐴) = ((𝐵 , 𝐴) ⨣ (𝐶 , 𝐴))) |
12 | 11 | fveq2d 6907 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘((𝐵 + 𝐶) , 𝐴)) = ((*𝑟‘𝐹)‘((𝐵 , 𝐴) ⨣ (𝐶 , 𝐴)))) |
13 | 5 | phlsrng 21629 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
14 | 13 | adantr 479 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐹 ∈ *-Ring) |
15 | eqid 2726 | . . . . . 6 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
16 | 5, 6, 7, 15 | ipcl 21631 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐵 , 𝐴) ∈ (Base‘𝐹)) |
17 | 1, 2, 4, 16 | syl3anc 1368 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 , 𝐴) ∈ (Base‘𝐹)) |
18 | 5, 6, 7, 15 | ipcl 21631 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐶 , 𝐴) ∈ (Base‘𝐹)) |
19 | 1, 3, 4, 18 | syl3anc 1368 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐶 , 𝐴) ∈ (Base‘𝐹)) |
20 | eqid 2726 | . . . . 5 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
21 | 20, 15, 9 | srngadd 20832 | . . . 4 ⊢ ((𝐹 ∈ *-Ring ∧ (𝐵 , 𝐴) ∈ (Base‘𝐹) ∧ (𝐶 , 𝐴) ∈ (Base‘𝐹)) → ((*𝑟‘𝐹)‘((𝐵 , 𝐴) ⨣ (𝐶 , 𝐴))) = (((*𝑟‘𝐹)‘(𝐵 , 𝐴)) ⨣ ((*𝑟‘𝐹)‘(𝐶 , 𝐴)))) |
22 | 14, 17, 19, 21 | syl3anc 1368 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘((𝐵 , 𝐴) ⨣ (𝐶 , 𝐴))) = (((*𝑟‘𝐹)‘(𝐵 , 𝐴)) ⨣ ((*𝑟‘𝐹)‘(𝐶 , 𝐴)))) |
23 | 12, 22 | eqtrd 2766 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘((𝐵 + 𝐶) , 𝐴)) = (((*𝑟‘𝐹)‘(𝐵 , 𝐴)) ⨣ ((*𝑟‘𝐹)‘(𝐶 , 𝐴)))) |
24 | phllmod 21628 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
25 | 24 | adantr 479 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ LMod) |
26 | 7, 8 | lmodvacl 20853 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐵 + 𝐶) ∈ 𝑉) |
27 | 25, 2, 3, 26 | syl3anc 1368 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 + 𝐶) ∈ 𝑉) |
28 | 5, 6, 7, 20 | ipcj 21632 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐵 + 𝐶) ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ((*𝑟‘𝐹)‘((𝐵 + 𝐶) , 𝐴)) = (𝐴 , (𝐵 + 𝐶))) |
29 | 1, 27, 4, 28 | syl3anc 1368 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘((𝐵 + 𝐶) , 𝐴)) = (𝐴 , (𝐵 + 𝐶))) |
30 | 5, 6, 7, 20 | ipcj 21632 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝐵 , 𝐴)) = (𝐴 , 𝐵)) |
31 | 1, 2, 4, 30 | syl3anc 1368 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘(𝐵 , 𝐴)) = (𝐴 , 𝐵)) |
32 | 5, 6, 7, 20 | ipcj 21632 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝐶 , 𝐴)) = (𝐴 , 𝐶)) |
33 | 1, 3, 4, 32 | syl3anc 1368 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘(𝐶 , 𝐴)) = (𝐴 , 𝐶)) |
34 | 31, 33 | oveq12d 7444 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((*𝑟‘𝐹)‘(𝐵 , 𝐴)) ⨣ ((*𝑟‘𝐹)‘(𝐶 , 𝐴))) = ((𝐴 , 𝐵) ⨣ (𝐴 , 𝐶))) |
35 | 23, 29, 34 | 3eqtr3d 2774 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 + 𝐶)) = ((𝐴 , 𝐵) ⨣ (𝐴 , 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ‘cfv 6556 (class class class)co 7426 Basecbs 17215 +gcplusg 17268 *𝑟cstv 17270 Scalarcsca 17271 ·𝑖cip 17273 *-Ringcsr 20819 LModclmod 20838 PreHilcphl 21622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-cnex 11216 ax-resscn 11217 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-addrcl 11221 ax-mulcl 11222 ax-mulrcl 11223 ax-mulcom 11224 ax-addass 11225 ax-mulass 11226 ax-distr 11227 ax-i2m1 11228 ax-1ne0 11229 ax-1rid 11230 ax-rnegex 11231 ax-rrecex 11232 ax-cnre 11233 ax-pre-lttri 11234 ax-pre-lttrn 11235 ax-pre-ltadd 11236 ax-pre-mulgt0 11237 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8005 df-2nd 8006 df-tpos 8243 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-rdg 8442 df-er 8736 df-map 8859 df-en 8977 df-dom 8978 df-sdom 8979 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-sub 11498 df-neg 11499 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17216 df-plusg 17281 df-mulr 17282 df-sca 17284 df-vsca 17285 df-ip 17286 df-0g 17458 df-mgm 18635 df-sgrp 18714 df-mnd 18730 df-mhm 18775 df-grp 18933 df-ghm 19209 df-mgp 20120 df-ur 20167 df-ring 20220 df-oppr 20318 df-rhm 20456 df-staf 20820 df-srng 20821 df-lmod 20840 df-lmhm 21002 df-lvec 21083 df-sra 21153 df-rgmod 21154 df-phl 21624 |
This theorem is referenced by: ip2di 21639 ipsubdi 21641 cphdi 25228 |
Copyright terms: Public domain | W3C validator |