![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipdi | Structured version Visualization version GIF version |
Description: Distributive law for inner product (left-distributivity). (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
ipdir.g | ⊢ + = (+g‘𝑊) |
ipdir.p | ⊢ ⨣ = (+g‘𝐹) |
Ref | Expression |
---|---|
ipdi | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 + 𝐶)) = ((𝐴 , 𝐵) ⨣ (𝐴 , 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ PreHil) | |
2 | simpr2 1194 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
3 | simpr3 1195 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
4 | simpr1 1193 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝑉) | |
5 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | phllmhm.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
7 | phllmhm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
8 | ipdir.g | . . . . . 6 ⊢ + = (+g‘𝑊) | |
9 | ipdir.p | . . . . . 6 ⊢ ⨣ = (+g‘𝐹) | |
10 | 5, 6, 7, 8, 9 | ipdir 21675 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉)) → ((𝐵 + 𝐶) , 𝐴) = ((𝐵 , 𝐴) ⨣ (𝐶 , 𝐴))) |
11 | 1, 2, 3, 4, 10 | syl13anc 1371 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐵 + 𝐶) , 𝐴) = ((𝐵 , 𝐴) ⨣ (𝐶 , 𝐴))) |
12 | 11 | fveq2d 6911 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘((𝐵 + 𝐶) , 𝐴)) = ((*𝑟‘𝐹)‘((𝐵 , 𝐴) ⨣ (𝐶 , 𝐴)))) |
13 | 5 | phlsrng 21667 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐹 ∈ *-Ring) |
15 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
16 | 5, 6, 7, 15 | ipcl 21669 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐵 , 𝐴) ∈ (Base‘𝐹)) |
17 | 1, 2, 4, 16 | syl3anc 1370 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 , 𝐴) ∈ (Base‘𝐹)) |
18 | 5, 6, 7, 15 | ipcl 21669 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐶 , 𝐴) ∈ (Base‘𝐹)) |
19 | 1, 3, 4, 18 | syl3anc 1370 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐶 , 𝐴) ∈ (Base‘𝐹)) |
20 | eqid 2735 | . . . . 5 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
21 | 20, 15, 9 | srngadd 20869 | . . . 4 ⊢ ((𝐹 ∈ *-Ring ∧ (𝐵 , 𝐴) ∈ (Base‘𝐹) ∧ (𝐶 , 𝐴) ∈ (Base‘𝐹)) → ((*𝑟‘𝐹)‘((𝐵 , 𝐴) ⨣ (𝐶 , 𝐴))) = (((*𝑟‘𝐹)‘(𝐵 , 𝐴)) ⨣ ((*𝑟‘𝐹)‘(𝐶 , 𝐴)))) |
22 | 14, 17, 19, 21 | syl3anc 1370 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘((𝐵 , 𝐴) ⨣ (𝐶 , 𝐴))) = (((*𝑟‘𝐹)‘(𝐵 , 𝐴)) ⨣ ((*𝑟‘𝐹)‘(𝐶 , 𝐴)))) |
23 | 12, 22 | eqtrd 2775 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘((𝐵 + 𝐶) , 𝐴)) = (((*𝑟‘𝐹)‘(𝐵 , 𝐴)) ⨣ ((*𝑟‘𝐹)‘(𝐶 , 𝐴)))) |
24 | phllmod 21666 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
25 | 24 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ LMod) |
26 | 7, 8 | lmodvacl 20890 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐵 + 𝐶) ∈ 𝑉) |
27 | 25, 2, 3, 26 | syl3anc 1370 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 + 𝐶) ∈ 𝑉) |
28 | 5, 6, 7, 20 | ipcj 21670 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐵 + 𝐶) ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ((*𝑟‘𝐹)‘((𝐵 + 𝐶) , 𝐴)) = (𝐴 , (𝐵 + 𝐶))) |
29 | 1, 27, 4, 28 | syl3anc 1370 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘((𝐵 + 𝐶) , 𝐴)) = (𝐴 , (𝐵 + 𝐶))) |
30 | 5, 6, 7, 20 | ipcj 21670 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝐵 , 𝐴)) = (𝐴 , 𝐵)) |
31 | 1, 2, 4, 30 | syl3anc 1370 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘(𝐵 , 𝐴)) = (𝐴 , 𝐵)) |
32 | 5, 6, 7, 20 | ipcj 21670 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝐶 , 𝐴)) = (𝐴 , 𝐶)) |
33 | 1, 3, 4, 32 | syl3anc 1370 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘(𝐶 , 𝐴)) = (𝐴 , 𝐶)) |
34 | 31, 33 | oveq12d 7449 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((*𝑟‘𝐹)‘(𝐵 , 𝐴)) ⨣ ((*𝑟‘𝐹)‘(𝐶 , 𝐴))) = ((𝐴 , 𝐵) ⨣ (𝐴 , 𝐶))) |
35 | 23, 29, 34 | 3eqtr3d 2783 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 + 𝐶)) = ((𝐴 , 𝐵) ⨣ (𝐴 , 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 *𝑟cstv 17300 Scalarcsca 17301 ·𝑖cip 17303 *-Ringcsr 20856 LModclmod 20875 PreHilcphl 21660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-grp 18967 df-ghm 19244 df-mgp 20153 df-ur 20200 df-ring 20253 df-oppr 20351 df-rhm 20489 df-staf 20857 df-srng 20858 df-lmod 20877 df-lmhm 21039 df-lvec 21120 df-sra 21190 df-rgmod 21191 df-phl 21662 |
This theorem is referenced by: ip2di 21677 ipsubdi 21679 cphdi 25254 |
Copyright terms: Public domain | W3C validator |