![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipassr | Structured version Visualization version GIF version |
Description: "Associative" law for second argument of inner product (compare ipass 21594). (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
ipdir.f | ⊢ 𝐾 = (Base‘𝐹) |
ipass.s | ⊢ · = ( ·𝑠 ‘𝑊) |
ipass.p | ⊢ × = (.r‘𝐹) |
ipassr.i | ⊢ ∗ = (*𝑟‘𝐹) |
Ref | Expression |
---|---|
ipassr | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐴 , (𝐶 · 𝐵)) = ((𝐴 , 𝐵) × ( ∗ ‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝑊 ∈ PreHil) | |
2 | simpr3 1193 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐶 ∈ 𝐾) | |
3 | simpr2 1192 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐵 ∈ 𝑉) | |
4 | simpr1 1191 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐴 ∈ 𝑉) | |
5 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | phllmhm.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
7 | phllmhm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
8 | ipdir.f | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
9 | ipass.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
10 | ipass.p | . . . . . 6 ⊢ × = (.r‘𝐹) | |
11 | 5, 6, 7, 8, 9, 10 | ipass 21594 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐶 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉)) → ((𝐶 · 𝐵) , 𝐴) = (𝐶 × (𝐵 , 𝐴))) |
12 | 1, 2, 3, 4, 11 | syl13anc 1369 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ((𝐶 · 𝐵) , 𝐴) = (𝐶 × (𝐵 , 𝐴))) |
13 | 12 | fveq2d 6900 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘((𝐶 · 𝐵) , 𝐴)) = ( ∗ ‘(𝐶 × (𝐵 , 𝐴)))) |
14 | phllmod 21579 | . . . . . 6 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
15 | 14 | adantr 479 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝑊 ∈ LMod) |
16 | 7, 5, 9, 8 | lmodvscl 20773 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐶 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝐶 · 𝐵) ∈ 𝑉) |
17 | 15, 2, 3, 16 | syl3anc 1368 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐶 · 𝐵) ∈ 𝑉) |
18 | ipassr.i | . . . . 5 ⊢ ∗ = (*𝑟‘𝐹) | |
19 | 5, 6, 7, 18 | ipcj 21583 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐶 · 𝐵) ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ( ∗ ‘((𝐶 · 𝐵) , 𝐴)) = (𝐴 , (𝐶 · 𝐵))) |
20 | 1, 17, 4, 19 | syl3anc 1368 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘((𝐶 · 𝐵) , 𝐴)) = (𝐴 , (𝐶 · 𝐵))) |
21 | 5 | phlsrng 21580 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
22 | 21 | adantr 479 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐹 ∈ *-Ring) |
23 | 5, 6, 7, 8 | ipcl 21582 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐵 , 𝐴) ∈ 𝐾) |
24 | 1, 3, 4, 23 | syl3anc 1368 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐵 , 𝐴) ∈ 𝐾) |
25 | 18, 8, 10 | srngmul 20750 | . . . 4 ⊢ ((𝐹 ∈ *-Ring ∧ 𝐶 ∈ 𝐾 ∧ (𝐵 , 𝐴) ∈ 𝐾) → ( ∗ ‘(𝐶 × (𝐵 , 𝐴))) = (( ∗ ‘(𝐵 , 𝐴)) × ( ∗ ‘𝐶))) |
26 | 22, 2, 24, 25 | syl3anc 1368 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘(𝐶 × (𝐵 , 𝐴))) = (( ∗ ‘(𝐵 , 𝐴)) × ( ∗ ‘𝐶))) |
27 | 13, 20, 26 | 3eqtr3d 2773 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐴 , (𝐶 · 𝐵)) = (( ∗ ‘(𝐵 , 𝐴)) × ( ∗ ‘𝐶))) |
28 | 5, 6, 7, 18 | ipcj 21583 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ( ∗ ‘(𝐵 , 𝐴)) = (𝐴 , 𝐵)) |
29 | 1, 3, 4, 28 | syl3anc 1368 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘(𝐵 , 𝐴)) = (𝐴 , 𝐵)) |
30 | 29 | oveq1d 7434 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (( ∗ ‘(𝐵 , 𝐴)) × ( ∗ ‘𝐶)) = ((𝐴 , 𝐵) × ( ∗ ‘𝐶))) |
31 | 27, 30 | eqtrd 2765 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐴 , (𝐶 · 𝐵)) = ((𝐴 , 𝐵) × ( ∗ ‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 .rcmulr 17237 *𝑟cstv 17238 Scalarcsca 17239 ·𝑠 cvsca 17240 ·𝑖cip 17241 *-Ringcsr 20736 LModclmod 20755 PreHilcphl 21573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-plusg 17249 df-mulr 17250 df-sca 17252 df-vsca 17253 df-ip 17254 df-0g 17426 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18743 df-ghm 19176 df-mgp 20087 df-ur 20134 df-ring 20187 df-oppr 20285 df-rhm 20423 df-staf 20737 df-srng 20738 df-lmod 20757 df-lmhm 20919 df-lvec 21000 df-sra 21070 df-rgmod 21071 df-phl 21575 |
This theorem is referenced by: ipassr2 21596 cphassr 25184 tcphcphlem2 25208 |
Copyright terms: Public domain | W3C validator |