MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipassr Structured version   Visualization version   GIF version

Theorem ipassr 20400
Description: "Associative" law for second argument of inner product (compare ipass 20399). (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipdir.f 𝐾 = (Base‘𝐹)
ipass.s · = ( ·𝑠𝑊)
ipass.p × = (.r𝐹)
ipassr.i = (*𝑟𝐹)
Assertion
Ref Expression
ipassr ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → (𝐴 , (𝐶 · 𝐵)) = ((𝐴 , 𝐵) × ( 𝐶)))

Proof of Theorem ipassr
StepHypRef Expression
1 simpl 476 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝑊 ∈ PreHil)
2 simpr3 1209 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝐶𝐾)
3 simpr2 1207 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝐵𝑉)
4 simpr1 1205 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝐴𝑉)
5 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
6 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
7 phllmhm.v . . . . . 6 𝑉 = (Base‘𝑊)
8 ipdir.f . . . . . 6 𝐾 = (Base‘𝐹)
9 ipass.s . . . . . 6 · = ( ·𝑠𝑊)
10 ipass.p . . . . . 6 × = (.r𝐹)
115, 6, 7, 8, 9, 10ipass 20399 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐶𝐾𝐵𝑉𝐴𝑉)) → ((𝐶 · 𝐵) , 𝐴) = (𝐶 × (𝐵 , 𝐴)))
121, 2, 3, 4, 11syl13anc 1440 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ((𝐶 · 𝐵) , 𝐴) = (𝐶 × (𝐵 , 𝐴)))
1312fveq2d 6452 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ( ‘((𝐶 · 𝐵) , 𝐴)) = ( ‘(𝐶 × (𝐵 , 𝐴))))
14 phllmod 20384 . . . . . 6 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
1514adantr 474 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝑊 ∈ LMod)
167, 5, 9, 8lmodvscl 19283 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐶𝐾𝐵𝑉) → (𝐶 · 𝐵) ∈ 𝑉)
1715, 2, 3, 16syl3anc 1439 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → (𝐶 · 𝐵) ∈ 𝑉)
18 ipassr.i . . . . 5 = (*𝑟𝐹)
195, 6, 7, 18ipcj 20388 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐶 · 𝐵) ∈ 𝑉𝐴𝑉) → ( ‘((𝐶 · 𝐵) , 𝐴)) = (𝐴 , (𝐶 · 𝐵)))
201, 17, 4, 19syl3anc 1439 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ( ‘((𝐶 · 𝐵) , 𝐴)) = (𝐴 , (𝐶 · 𝐵)))
215phlsrng 20385 . . . . 5 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
2221adantr 474 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝐹 ∈ *-Ring)
235, 6, 7, 8ipcl 20387 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐴𝑉) → (𝐵 , 𝐴) ∈ 𝐾)
241, 3, 4, 23syl3anc 1439 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → (𝐵 , 𝐴) ∈ 𝐾)
2518, 8, 10srngmul 19261 . . . 4 ((𝐹 ∈ *-Ring ∧ 𝐶𝐾 ∧ (𝐵 , 𝐴) ∈ 𝐾) → ( ‘(𝐶 × (𝐵 , 𝐴))) = (( ‘(𝐵 , 𝐴)) × ( 𝐶)))
2622, 2, 24, 25syl3anc 1439 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ( ‘(𝐶 × (𝐵 , 𝐴))) = (( ‘(𝐵 , 𝐴)) × ( 𝐶)))
2713, 20, 263eqtr3d 2822 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → (𝐴 , (𝐶 · 𝐵)) = (( ‘(𝐵 , 𝐴)) × ( 𝐶)))
285, 6, 7, 18ipcj 20388 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐴𝑉) → ( ‘(𝐵 , 𝐴)) = (𝐴 , 𝐵))
291, 3, 4, 28syl3anc 1439 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ( ‘(𝐵 , 𝐴)) = (𝐴 , 𝐵))
3029oveq1d 6939 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → (( ‘(𝐵 , 𝐴)) × ( 𝐶)) = ((𝐴 , 𝐵) × ( 𝐶)))
3127, 30eqtrd 2814 1 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → (𝐴 , (𝐶 · 𝐵)) = ((𝐴 , 𝐵) × ( 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  cfv 6137  (class class class)co 6924  Basecbs 16266  .rcmulr 16350  *𝑟cstv 16351  Scalarcsca 16352   ·𝑠 cvsca 16353  ·𝑖cip 16354  *-Ringcsr 19247  LModclmod 19266  PreHilcphl 20378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-tpos 7636  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-7 11448  df-8 11449  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-plusg 16362  df-mulr 16363  df-sca 16365  df-vsca 16366  df-ip 16367  df-0g 16499  df-mgm 17639  df-sgrp 17681  df-mnd 17692  df-mhm 17732  df-ghm 18053  df-mgp 18888  df-ur 18900  df-ring 18947  df-oppr 19021  df-rnghom 19115  df-staf 19248  df-srng 19249  df-lmod 19268  df-lmhm 19428  df-lvec 19509  df-sra 19580  df-rgmod 19581  df-phl 20380
This theorem is referenced by:  ipassr2  20401  cphassr  23430  tcphcphlem2  23453
  Copyright terms: Public domain W3C validator