Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipassr Structured version   Visualization version   GIF version

Theorem ipassr 20766
 Description: "Associative" law for second argument of inner product (compare ipass 20765). (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipdir.f 𝐾 = (Base‘𝐹)
ipass.s · = ( ·𝑠𝑊)
ipass.p × = (.r𝐹)
ipassr.i = (*𝑟𝐹)
Assertion
Ref Expression
ipassr ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → (𝐴 , (𝐶 · 𝐵)) = ((𝐴 , 𝐵) × ( 𝐶)))

Proof of Theorem ipassr
StepHypRef Expression
1 simpl 486 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝑊 ∈ PreHil)
2 simpr3 1193 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝐶𝐾)
3 simpr2 1192 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝐵𝑉)
4 simpr1 1191 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝐴𝑉)
5 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
6 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
7 phllmhm.v . . . . . 6 𝑉 = (Base‘𝑊)
8 ipdir.f . . . . . 6 𝐾 = (Base‘𝐹)
9 ipass.s . . . . . 6 · = ( ·𝑠𝑊)
10 ipass.p . . . . . 6 × = (.r𝐹)
115, 6, 7, 8, 9, 10ipass 20765 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐶𝐾𝐵𝑉𝐴𝑉)) → ((𝐶 · 𝐵) , 𝐴) = (𝐶 × (𝐵 , 𝐴)))
121, 2, 3, 4, 11syl13anc 1369 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ((𝐶 · 𝐵) , 𝐴) = (𝐶 × (𝐵 , 𝐴)))
1312fveq2d 6647 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ( ‘((𝐶 · 𝐵) , 𝐴)) = ( ‘(𝐶 × (𝐵 , 𝐴))))
14 phllmod 20750 . . . . . 6 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
1514adantr 484 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝑊 ∈ LMod)
167, 5, 9, 8lmodvscl 19627 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐶𝐾𝐵𝑉) → (𝐶 · 𝐵) ∈ 𝑉)
1715, 2, 3, 16syl3anc 1368 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → (𝐶 · 𝐵) ∈ 𝑉)
18 ipassr.i . . . . 5 = (*𝑟𝐹)
195, 6, 7, 18ipcj 20754 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐶 · 𝐵) ∈ 𝑉𝐴𝑉) → ( ‘((𝐶 · 𝐵) , 𝐴)) = (𝐴 , (𝐶 · 𝐵)))
201, 17, 4, 19syl3anc 1368 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ( ‘((𝐶 · 𝐵) , 𝐴)) = (𝐴 , (𝐶 · 𝐵)))
215phlsrng 20751 . . . . 5 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
2221adantr 484 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝐹 ∈ *-Ring)
235, 6, 7, 8ipcl 20753 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐴𝑉) → (𝐵 , 𝐴) ∈ 𝐾)
241, 3, 4, 23syl3anc 1368 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → (𝐵 , 𝐴) ∈ 𝐾)
2518, 8, 10srngmul 19605 . . . 4 ((𝐹 ∈ *-Ring ∧ 𝐶𝐾 ∧ (𝐵 , 𝐴) ∈ 𝐾) → ( ‘(𝐶 × (𝐵 , 𝐴))) = (( ‘(𝐵 , 𝐴)) × ( 𝐶)))
2622, 2, 24, 25syl3anc 1368 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ( ‘(𝐶 × (𝐵 , 𝐴))) = (( ‘(𝐵 , 𝐴)) × ( 𝐶)))
2713, 20, 263eqtr3d 2864 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → (𝐴 , (𝐶 · 𝐵)) = (( ‘(𝐵 , 𝐴)) × ( 𝐶)))
285, 6, 7, 18ipcj 20754 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐴𝑉) → ( ‘(𝐵 , 𝐴)) = (𝐴 , 𝐵))
291, 3, 4, 28syl3anc 1368 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ( ‘(𝐵 , 𝐴)) = (𝐴 , 𝐵))
3029oveq1d 7145 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → (( ‘(𝐵 , 𝐴)) × ( 𝐶)) = ((𝐴 , 𝐵) × ( 𝐶)))
3127, 30eqtrd 2856 1 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → (𝐴 , (𝐶 · 𝐵)) = ((𝐴 , 𝐵) × ( 𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ‘cfv 6328  (class class class)co 7130  Basecbs 16462  .rcmulr 16545  *𝑟cstv 16546  Scalarcsca 16547   ·𝑠 cvsca 16548  ·𝑖cip 16549  *-Ringcsr 19591  LModclmod 19610  PreHilcphl 20744 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-tpos 7867  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-plusg 16557  df-mulr 16558  df-sca 16560  df-vsca 16561  df-ip 16562  df-0g 16694  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-mhm 17935  df-ghm 18335  df-mgp 19219  df-ur 19231  df-ring 19278  df-oppr 19352  df-rnghom 19446  df-staf 19592  df-srng 19593  df-lmod 19612  df-lmhm 19770  df-lvec 19851  df-sra 19920  df-rgmod 19921  df-phl 20746 This theorem is referenced by:  ipassr2  20767  cphassr  23796  tcphcphlem2  23819
 Copyright terms: Public domain W3C validator