Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ipassr | Structured version Visualization version GIF version |
Description: "Associative" law for second argument of inner product (compare ipass 20839). (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
ipdir.f | ⊢ 𝐾 = (Base‘𝐹) |
ipass.s | ⊢ · = ( ·𝑠 ‘𝑊) |
ipass.p | ⊢ × = (.r‘𝐹) |
ipassr.i | ⊢ ∗ = (*𝑟‘𝐹) |
Ref | Expression |
---|---|
ipassr | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐴 , (𝐶 · 𝐵)) = ((𝐴 , 𝐵) × ( ∗ ‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝑊 ∈ PreHil) | |
2 | simpr3 1195 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐶 ∈ 𝐾) | |
3 | simpr2 1194 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐵 ∈ 𝑉) | |
4 | simpr1 1193 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐴 ∈ 𝑉) | |
5 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | phllmhm.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
7 | phllmhm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
8 | ipdir.f | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
9 | ipass.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
10 | ipass.p | . . . . . 6 ⊢ × = (.r‘𝐹) | |
11 | 5, 6, 7, 8, 9, 10 | ipass 20839 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐶 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉)) → ((𝐶 · 𝐵) , 𝐴) = (𝐶 × (𝐵 , 𝐴))) |
12 | 1, 2, 3, 4, 11 | syl13anc 1371 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ((𝐶 · 𝐵) , 𝐴) = (𝐶 × (𝐵 , 𝐴))) |
13 | 12 | fveq2d 6772 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘((𝐶 · 𝐵) , 𝐴)) = ( ∗ ‘(𝐶 × (𝐵 , 𝐴)))) |
14 | phllmod 20824 | . . . . . 6 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
15 | 14 | adantr 481 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝑊 ∈ LMod) |
16 | 7, 5, 9, 8 | lmodvscl 20129 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐶 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝐶 · 𝐵) ∈ 𝑉) |
17 | 15, 2, 3, 16 | syl3anc 1370 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐶 · 𝐵) ∈ 𝑉) |
18 | ipassr.i | . . . . 5 ⊢ ∗ = (*𝑟‘𝐹) | |
19 | 5, 6, 7, 18 | ipcj 20828 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐶 · 𝐵) ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ( ∗ ‘((𝐶 · 𝐵) , 𝐴)) = (𝐴 , (𝐶 · 𝐵))) |
20 | 1, 17, 4, 19 | syl3anc 1370 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘((𝐶 · 𝐵) , 𝐴)) = (𝐴 , (𝐶 · 𝐵))) |
21 | 5 | phlsrng 20825 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
22 | 21 | adantr 481 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐹 ∈ *-Ring) |
23 | 5, 6, 7, 8 | ipcl 20827 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐵 , 𝐴) ∈ 𝐾) |
24 | 1, 3, 4, 23 | syl3anc 1370 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐵 , 𝐴) ∈ 𝐾) |
25 | 18, 8, 10 | srngmul 20107 | . . . 4 ⊢ ((𝐹 ∈ *-Ring ∧ 𝐶 ∈ 𝐾 ∧ (𝐵 , 𝐴) ∈ 𝐾) → ( ∗ ‘(𝐶 × (𝐵 , 𝐴))) = (( ∗ ‘(𝐵 , 𝐴)) × ( ∗ ‘𝐶))) |
26 | 22, 2, 24, 25 | syl3anc 1370 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘(𝐶 × (𝐵 , 𝐴))) = (( ∗ ‘(𝐵 , 𝐴)) × ( ∗ ‘𝐶))) |
27 | 13, 20, 26 | 3eqtr3d 2786 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐴 , (𝐶 · 𝐵)) = (( ∗ ‘(𝐵 , 𝐴)) × ( ∗ ‘𝐶))) |
28 | 5, 6, 7, 18 | ipcj 20828 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ( ∗ ‘(𝐵 , 𝐴)) = (𝐴 , 𝐵)) |
29 | 1, 3, 4, 28 | syl3anc 1370 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘(𝐵 , 𝐴)) = (𝐴 , 𝐵)) |
30 | 29 | oveq1d 7284 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (( ∗ ‘(𝐵 , 𝐴)) × ( ∗ ‘𝐶)) = ((𝐴 , 𝐵) × ( ∗ ‘𝐶))) |
31 | 27, 30 | eqtrd 2778 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐴 , (𝐶 · 𝐵)) = ((𝐴 , 𝐵) × ( ∗ ‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6428 (class class class)co 7269 Basecbs 16901 .rcmulr 16952 *𝑟cstv 16953 Scalarcsca 16954 ·𝑠 cvsca 16955 ·𝑖cip 16956 *-Ringcsr 20093 LModclmod 20112 PreHilcphl 20818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 ax-cnex 10916 ax-resscn 10917 ax-1cn 10918 ax-icn 10919 ax-addcl 10920 ax-addrcl 10921 ax-mulcl 10922 ax-mulrcl 10923 ax-mulcom 10924 ax-addass 10925 ax-mulass 10926 ax-distr 10927 ax-i2m1 10928 ax-1ne0 10929 ax-1rid 10930 ax-rnegex 10931 ax-rrecex 10932 ax-cnre 10933 ax-pre-lttri 10934 ax-pre-lttrn 10935 ax-pre-ltadd 10936 ax-pre-mulgt0 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5486 df-eprel 5492 df-po 5500 df-so 5501 df-fr 5541 df-we 5543 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-pred 6197 df-ord 6264 df-on 6265 df-lim 6266 df-suc 6267 df-iota 6386 df-fun 6430 df-fn 6431 df-f 6432 df-f1 6433 df-fo 6434 df-f1o 6435 df-fv 6436 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-2nd 7823 df-tpos 8031 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-er 8487 df-map 8606 df-en 8723 df-dom 8724 df-sdom 8725 df-pnf 11000 df-mnf 11001 df-xr 11002 df-ltxr 11003 df-le 11004 df-sub 11196 df-neg 11197 df-nn 11963 df-2 12025 df-3 12026 df-4 12027 df-5 12028 df-6 12029 df-7 12030 df-8 12031 df-sets 16854 df-slot 16872 df-ndx 16884 df-base 16902 df-plusg 16964 df-mulr 16965 df-sca 16967 df-vsca 16968 df-ip 16969 df-0g 17141 df-mgm 18315 df-sgrp 18364 df-mnd 18375 df-mhm 18419 df-ghm 18821 df-mgp 19710 df-ur 19727 df-ring 19774 df-oppr 19851 df-rnghom 19948 df-staf 20094 df-srng 20095 df-lmod 20114 df-lmhm 20273 df-lvec 20354 df-sra 20423 df-rgmod 20424 df-phl 20820 |
This theorem is referenced by: ipassr2 20841 cphassr 24365 tcphcphlem2 24389 |
Copyright terms: Public domain | W3C validator |