MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipassr Structured version   Visualization version   GIF version

Theorem ipassr 21604
Description: "Associative" law for second argument of inner product (compare ipass 21603). (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipdir.f 𝐾 = (Base‘𝐹)
ipass.s · = ( ·𝑠𝑊)
ipass.p × = (.r𝐹)
ipassr.i = (*𝑟𝐹)
Assertion
Ref Expression
ipassr ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → (𝐴 , (𝐶 · 𝐵)) = ((𝐴 , 𝐵) × ( 𝐶)))

Proof of Theorem ipassr
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝑊 ∈ PreHil)
2 simpr3 1197 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝐶𝐾)
3 simpr2 1196 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝐵𝑉)
4 simpr1 1195 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝐴𝑉)
5 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
6 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
7 phllmhm.v . . . . . 6 𝑉 = (Base‘𝑊)
8 ipdir.f . . . . . 6 𝐾 = (Base‘𝐹)
9 ipass.s . . . . . 6 · = ( ·𝑠𝑊)
10 ipass.p . . . . . 6 × = (.r𝐹)
115, 6, 7, 8, 9, 10ipass 21603 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐶𝐾𝐵𝑉𝐴𝑉)) → ((𝐶 · 𝐵) , 𝐴) = (𝐶 × (𝐵 , 𝐴)))
121, 2, 3, 4, 11syl13anc 1374 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ((𝐶 · 𝐵) , 𝐴) = (𝐶 × (𝐵 , 𝐴)))
1312fveq2d 6879 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ( ‘((𝐶 · 𝐵) , 𝐴)) = ( ‘(𝐶 × (𝐵 , 𝐴))))
14 phllmod 21588 . . . . . 6 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
1514adantr 480 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝑊 ∈ LMod)
167, 5, 9, 8lmodvscl 20833 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐶𝐾𝐵𝑉) → (𝐶 · 𝐵) ∈ 𝑉)
1715, 2, 3, 16syl3anc 1373 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → (𝐶 · 𝐵) ∈ 𝑉)
18 ipassr.i . . . . 5 = (*𝑟𝐹)
195, 6, 7, 18ipcj 21592 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐶 · 𝐵) ∈ 𝑉𝐴𝑉) → ( ‘((𝐶 · 𝐵) , 𝐴)) = (𝐴 , (𝐶 · 𝐵)))
201, 17, 4, 19syl3anc 1373 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ( ‘((𝐶 · 𝐵) , 𝐴)) = (𝐴 , (𝐶 · 𝐵)))
215phlsrng 21589 . . . . 5 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
2221adantr 480 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝐹 ∈ *-Ring)
235, 6, 7, 8ipcl 21591 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐴𝑉) → (𝐵 , 𝐴) ∈ 𝐾)
241, 3, 4, 23syl3anc 1373 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → (𝐵 , 𝐴) ∈ 𝐾)
2518, 8, 10srngmul 20810 . . . 4 ((𝐹 ∈ *-Ring ∧ 𝐶𝐾 ∧ (𝐵 , 𝐴) ∈ 𝐾) → ( ‘(𝐶 × (𝐵 , 𝐴))) = (( ‘(𝐵 , 𝐴)) × ( 𝐶)))
2622, 2, 24, 25syl3anc 1373 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ( ‘(𝐶 × (𝐵 , 𝐴))) = (( ‘(𝐵 , 𝐴)) × ( 𝐶)))
2713, 20, 263eqtr3d 2778 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → (𝐴 , (𝐶 · 𝐵)) = (( ‘(𝐵 , 𝐴)) × ( 𝐶)))
285, 6, 7, 18ipcj 21592 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐴𝑉) → ( ‘(𝐵 , 𝐴)) = (𝐴 , 𝐵))
291, 3, 4, 28syl3anc 1373 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ( ‘(𝐵 , 𝐴)) = (𝐴 , 𝐵))
3029oveq1d 7418 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → (( ‘(𝐵 , 𝐴)) × ( 𝐶)) = ((𝐴 , 𝐵) × ( 𝐶)))
3127, 30eqtrd 2770 1 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → (𝐴 , (𝐶 · 𝐵)) = ((𝐴 , 𝐵) × ( 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  cfv 6530  (class class class)co 7403  Basecbs 17226  .rcmulr 17270  *𝑟cstv 17271  Scalarcsca 17272   ·𝑠 cvsca 17273  ·𝑖cip 17274  *-Ringcsr 20796  LModclmod 20815  PreHilcphl 21582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-plusg 17282  df-mulr 17283  df-sca 17285  df-vsca 17286  df-ip 17287  df-0g 17453  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-ghm 19194  df-mgp 20099  df-ur 20140  df-ring 20193  df-oppr 20295  df-rhm 20430  df-staf 20797  df-srng 20798  df-lmod 20817  df-lmhm 20978  df-lvec 21059  df-sra 21129  df-rgmod 21130  df-phl 21584
This theorem is referenced by:  ipassr2  21605  cphassr  25162  tcphcphlem2  25186
  Copyright terms: Public domain W3C validator