| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipassr2 | Structured version Visualization version GIF version | ||
| Description: "Associative" law for inner product. Conjugate version of ipassr 21555. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
| phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
| ipdir.f | ⊢ 𝐾 = (Base‘𝐹) |
| ipass.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| ipass.p | ⊢ × = (.r‘𝐹) |
| ipassr.i | ⊢ ∗ = (*𝑟‘𝐹) |
| Ref | Expression |
|---|---|
| ipassr2 | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ((𝐴 , 𝐵) × 𝐶) = (𝐴 , (( ∗ ‘𝐶) · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝑊 ∈ PreHil) | |
| 2 | simpr1 1195 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐴 ∈ 𝑉) | |
| 3 | simpr2 1196 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐵 ∈ 𝑉) | |
| 4 | phlsrng.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | 4 | phlsrng 21540 | . . . 4 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
| 6 | simpr3 1197 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐶 ∈ 𝐾) | |
| 7 | ipassr.i | . . . . 5 ⊢ ∗ = (*𝑟‘𝐹) | |
| 8 | ipdir.f | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 9 | 7, 8 | srngcl 20758 | . . . 4 ⊢ ((𝐹 ∈ *-Ring ∧ 𝐶 ∈ 𝐾) → ( ∗ ‘𝐶) ∈ 𝐾) |
| 10 | 5, 6, 9 | syl2an2r 685 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘𝐶) ∈ 𝐾) |
| 11 | phllmhm.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
| 12 | phllmhm.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 13 | ipass.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 14 | ipass.p | . . . 4 ⊢ × = (.r‘𝐹) | |
| 15 | 4, 11, 12, 8, 13, 14, 7 | ipassr 21555 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ ( ∗ ‘𝐶) ∈ 𝐾)) → (𝐴 , (( ∗ ‘𝐶) · 𝐵)) = ((𝐴 , 𝐵) × ( ∗ ‘( ∗ ‘𝐶)))) |
| 16 | 1, 2, 3, 10, 15 | syl13anc 1374 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐴 , (( ∗ ‘𝐶) · 𝐵)) = ((𝐴 , 𝐵) × ( ∗ ‘( ∗ ‘𝐶)))) |
| 17 | 7, 8 | srngnvl 20759 | . . . 4 ⊢ ((𝐹 ∈ *-Ring ∧ 𝐶 ∈ 𝐾) → ( ∗ ‘( ∗ ‘𝐶)) = 𝐶) |
| 18 | 5, 6, 17 | syl2an2r 685 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘( ∗ ‘𝐶)) = 𝐶) |
| 19 | 18 | oveq2d 7403 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ((𝐴 , 𝐵) × ( ∗ ‘( ∗ ‘𝐶))) = ((𝐴 , 𝐵) × 𝐶)) |
| 20 | 16, 19 | eqtr2d 2765 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ((𝐴 , 𝐵) × 𝐶) = (𝐴 , (( ∗ ‘𝐶) · 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 .rcmulr 17221 *𝑟cstv 17222 Scalarcsca 17223 ·𝑠 cvsca 17224 ·𝑖cip 17225 *-Ringcsr 20747 PreHilcphl 21533 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-ghm 19145 df-mgp 20050 df-ur 20091 df-ring 20144 df-oppr 20246 df-rhm 20381 df-staf 20748 df-srng 20749 df-lmod 20768 df-lmhm 20929 df-lvec 21010 df-sra 21080 df-rgmod 21081 df-phl 21535 |
| This theorem is referenced by: ipcau2 25134 |
| Copyright terms: Public domain | W3C validator |