MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipassr2 Structured version   Visualization version   GIF version

Theorem ipassr2 20202
Description: "Associative" law for inner product. Conjugate version of ipassr 20201. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipdir.f 𝐾 = (Base‘𝐹)
ipass.s · = ( ·𝑠𝑊)
ipass.p × = (.r𝐹)
ipassr.i = (*𝑟𝐹)
Assertion
Ref Expression
ipassr2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ((𝐴 , 𝐵) × 𝐶) = (𝐴 , (( 𝐶) · 𝐵)))

Proof of Theorem ipassr2
StepHypRef Expression
1 simpl 468 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝑊 ∈ PreHil)
2 simpr1 1233 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝐴𝑉)
3 simpr2 1235 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝐵𝑉)
4 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
54phlsrng 20186 . . . . 5 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
65adantr 466 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝐹 ∈ *-Ring)
7 simpr3 1237 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝐶𝐾)
8 ipassr.i . . . . 5 = (*𝑟𝐹)
9 ipdir.f . . . . 5 𝐾 = (Base‘𝐹)
108, 9srngcl 19058 . . . 4 ((𝐹 ∈ *-Ring ∧ 𝐶𝐾) → ( 𝐶) ∈ 𝐾)
116, 7, 10syl2anc 573 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ( 𝐶) ∈ 𝐾)
12 phllmhm.h . . . 4 , = (·𝑖𝑊)
13 phllmhm.v . . . 4 𝑉 = (Base‘𝑊)
14 ipass.s . . . 4 · = ( ·𝑠𝑊)
15 ipass.p . . . 4 × = (.r𝐹)
164, 12, 13, 9, 14, 15, 8ipassr 20201 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉 ∧ ( 𝐶) ∈ 𝐾)) → (𝐴 , (( 𝐶) · 𝐵)) = ((𝐴 , 𝐵) × ( ‘( 𝐶))))
171, 2, 3, 11, 16syl13anc 1478 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → (𝐴 , (( 𝐶) · 𝐵)) = ((𝐴 , 𝐵) × ( ‘( 𝐶))))
188, 9srngnvl 19059 . . . 4 ((𝐹 ∈ *-Ring ∧ 𝐶𝐾) → ( ‘( 𝐶)) = 𝐶)
196, 7, 18syl2anc 573 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ( ‘( 𝐶)) = 𝐶)
2019oveq2d 6807 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ((𝐴 , 𝐵) × ( ‘( 𝐶))) = ((𝐴 , 𝐵) × 𝐶))
2117, 20eqtr2d 2806 1 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ((𝐴 , 𝐵) × 𝐶) = (𝐴 , (( 𝐶) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  cfv 6029  (class class class)co 6791  Basecbs 16057  .rcmulr 16143  *𝑟cstv 16144  Scalarcsca 16145   ·𝑠 cvsca 16146  ·𝑖cip 16147  *-Ringcsr 19047  PreHilcphl 20179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-tpos 7502  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-er 7894  df-map 8009  df-en 8108  df-dom 8109  df-sdom 8110  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-plusg 16155  df-mulr 16156  df-sca 16158  df-vsca 16159  df-ip 16160  df-0g 16303  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-ghm 17859  df-mgp 18691  df-ur 18703  df-ring 18750  df-oppr 18824  df-rnghom 18918  df-staf 19048  df-srng 19049  df-lmod 19068  df-lmhm 19228  df-lvec 19309  df-sra 19380  df-rgmod 19381  df-phl 20181
This theorem is referenced by:  ipcau2  23245
  Copyright terms: Public domain W3C validator