![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipassr2 | Structured version Visualization version GIF version |
Description: "Associative" law for inner product. Conjugate version of ipassr 20482. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
ipdir.f | ⊢ 𝐾 = (Base‘𝐹) |
ipass.s | ⊢ · = ( ·𝑠 ‘𝑊) |
ipass.p | ⊢ × = (.r‘𝐹) |
ipassr.i | ⊢ ∗ = (*𝑟‘𝐹) |
Ref | Expression |
---|---|
ipassr2 | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ((𝐴 , 𝐵) × 𝐶) = (𝐴 , (( ∗ ‘𝐶) · 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 475 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝑊 ∈ PreHil) | |
2 | simpr1 1174 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐴 ∈ 𝑉) | |
3 | simpr2 1175 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐵 ∈ 𝑉) | |
4 | phlsrng.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | 4 | phlsrng 20467 | . . . 4 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
6 | simpr3 1176 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐶 ∈ 𝐾) | |
7 | ipassr.i | . . . . 5 ⊢ ∗ = (*𝑟‘𝐹) | |
8 | ipdir.f | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
9 | 7, 8 | srngcl 19338 | . . . 4 ⊢ ((𝐹 ∈ *-Ring ∧ 𝐶 ∈ 𝐾) → ( ∗ ‘𝐶) ∈ 𝐾) |
10 | 5, 6, 9 | syl2an2r 672 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘𝐶) ∈ 𝐾) |
11 | phllmhm.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
12 | phllmhm.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
13 | ipass.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
14 | ipass.p | . . . 4 ⊢ × = (.r‘𝐹) | |
15 | 4, 11, 12, 8, 13, 14, 7 | ipassr 20482 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ ( ∗ ‘𝐶) ∈ 𝐾)) → (𝐴 , (( ∗ ‘𝐶) · 𝐵)) = ((𝐴 , 𝐵) × ( ∗ ‘( ∗ ‘𝐶)))) |
16 | 1, 2, 3, 10, 15 | syl13anc 1352 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐴 , (( ∗ ‘𝐶) · 𝐵)) = ((𝐴 , 𝐵) × ( ∗ ‘( ∗ ‘𝐶)))) |
17 | 7, 8 | srngnvl 19339 | . . . 4 ⊢ ((𝐹 ∈ *-Ring ∧ 𝐶 ∈ 𝐾) → ( ∗ ‘( ∗ ‘𝐶)) = 𝐶) |
18 | 5, 6, 17 | syl2an2r 672 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘( ∗ ‘𝐶)) = 𝐶) |
19 | 18 | oveq2d 6986 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ((𝐴 , 𝐵) × ( ∗ ‘( ∗ ‘𝐶))) = ((𝐴 , 𝐵) × 𝐶)) |
20 | 16, 19 | eqtr2d 2809 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ((𝐴 , 𝐵) × 𝐶) = (𝐴 , (( ∗ ‘𝐶) · 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2048 ‘cfv 6182 (class class class)co 6970 Basecbs 16329 .rcmulr 16412 *𝑟cstv 16413 Scalarcsca 16414 ·𝑠 cvsca 16415 ·𝑖cip 16416 *-Ringcsr 19327 PreHilcphl 20460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-tpos 7688 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-map 8200 df-en 8299 df-dom 8300 df-sdom 8301 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-2 11496 df-3 11497 df-4 11498 df-5 11499 df-6 11500 df-7 11501 df-8 11502 df-ndx 16332 df-slot 16333 df-base 16335 df-sets 16336 df-plusg 16424 df-mulr 16425 df-sca 16427 df-vsca 16428 df-ip 16429 df-0g 16561 df-mgm 17700 df-sgrp 17742 df-mnd 17753 df-mhm 17793 df-ghm 18117 df-mgp 18953 df-ur 18965 df-ring 19012 df-oppr 19086 df-rnghom 19180 df-staf 19328 df-srng 19329 df-lmod 19348 df-lmhm 19506 df-lvec 19587 df-sra 19656 df-rgmod 19657 df-phl 20462 |
This theorem is referenced by: ipcau2 23530 |
Copyright terms: Public domain | W3C validator |