![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipassr2 | Structured version Visualization version GIF version |
Description: "Associative" law for inner product. Conjugate version of ipassr 21499. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | β’ πΉ = (Scalarβπ) |
phllmhm.h | β’ , = (Β·πβπ) |
phllmhm.v | β’ π = (Baseβπ) |
ipdir.f | β’ πΎ = (BaseβπΉ) |
ipass.s | β’ Β· = ( Β·π βπ) |
ipass.p | β’ Γ = (.rβπΉ) |
ipassr.i | β’ β = (*πβπΉ) |
Ref | Expression |
---|---|
ipassr2 | β’ ((π β PreHil β§ (π΄ β π β§ π΅ β π β§ πΆ β πΎ)) β ((π΄ , π΅) Γ πΆ) = (π΄ , (( β βπΆ) Β· π΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 β’ ((π β PreHil β§ (π΄ β π β§ π΅ β π β§ πΆ β πΎ)) β π β PreHil) | |
2 | simpr1 1191 | . . 3 β’ ((π β PreHil β§ (π΄ β π β§ π΅ β π β§ πΆ β πΎ)) β π΄ β π) | |
3 | simpr2 1192 | . . 3 β’ ((π β PreHil β§ (π΄ β π β§ π΅ β π β§ πΆ β πΎ)) β π΅ β π) | |
4 | phlsrng.f | . . . . 5 β’ πΉ = (Scalarβπ) | |
5 | 4 | phlsrng 21484 | . . . 4 β’ (π β PreHil β πΉ β *-Ring) |
6 | simpr3 1193 | . . . 4 β’ ((π β PreHil β§ (π΄ β π β§ π΅ β π β§ πΆ β πΎ)) β πΆ β πΎ) | |
7 | ipassr.i | . . . . 5 β’ β = (*πβπΉ) | |
8 | ipdir.f | . . . . 5 β’ πΎ = (BaseβπΉ) | |
9 | 7, 8 | srngcl 20683 | . . . 4 β’ ((πΉ β *-Ring β§ πΆ β πΎ) β ( β βπΆ) β πΎ) |
10 | 5, 6, 9 | syl2an2r 682 | . . 3 β’ ((π β PreHil β§ (π΄ β π β§ π΅ β π β§ πΆ β πΎ)) β ( β βπΆ) β πΎ) |
11 | phllmhm.h | . . . 4 β’ , = (Β·πβπ) | |
12 | phllmhm.v | . . . 4 β’ π = (Baseβπ) | |
13 | ipass.s | . . . 4 β’ Β· = ( Β·π βπ) | |
14 | ipass.p | . . . 4 β’ Γ = (.rβπΉ) | |
15 | 4, 11, 12, 8, 13, 14, 7 | ipassr 21499 | . . 3 β’ ((π β PreHil β§ (π΄ β π β§ π΅ β π β§ ( β βπΆ) β πΎ)) β (π΄ , (( β βπΆ) Β· π΅)) = ((π΄ , π΅) Γ ( β β( β βπΆ)))) |
16 | 1, 2, 3, 10, 15 | syl13anc 1369 | . 2 β’ ((π β PreHil β§ (π΄ β π β§ π΅ β π β§ πΆ β πΎ)) β (π΄ , (( β βπΆ) Β· π΅)) = ((π΄ , π΅) Γ ( β β( β βπΆ)))) |
17 | 7, 8 | srngnvl 20684 | . . . 4 β’ ((πΉ β *-Ring β§ πΆ β πΎ) β ( β β( β βπΆ)) = πΆ) |
18 | 5, 6, 17 | syl2an2r 682 | . . 3 β’ ((π β PreHil β§ (π΄ β π β§ π΅ β π β§ πΆ β πΎ)) β ( β β( β βπΆ)) = πΆ) |
19 | 18 | oveq2d 7417 | . 2 β’ ((π β PreHil β§ (π΄ β π β§ π΅ β π β§ πΆ β πΎ)) β ((π΄ , π΅) Γ ( β β( β βπΆ))) = ((π΄ , π΅) Γ πΆ)) |
20 | 16, 19 | eqtr2d 2765 | 1 β’ ((π β PreHil β§ (π΄ β π β§ π΅ β π β§ πΆ β πΎ)) β ((π΄ , π΅) Γ πΆ) = (π΄ , (( β βπΆ) Β· π΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 βcfv 6533 (class class class)co 7401 Basecbs 17140 .rcmulr 17194 *πcstv 17195 Scalarcsca 17196 Β·π cvsca 17197 Β·πcip 17198 *-Ringcsr 20672 PreHilcphl 21477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-0g 17383 df-mgm 18560 df-sgrp 18639 df-mnd 18655 df-mhm 18700 df-ghm 19124 df-mgp 20025 df-ur 20072 df-ring 20125 df-oppr 20221 df-rhm 20359 df-staf 20673 df-srng 20674 df-lmod 20693 df-lmhm 20855 df-lvec 20936 df-sra 21006 df-rgmod 21007 df-phl 21479 |
This theorem is referenced by: ipcau2 25072 |
Copyright terms: Public domain | W3C validator |