MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipassr2 Structured version   Visualization version   GIF version

Theorem ipassr2 21556
Description: "Associative" law for inner product. Conjugate version of ipassr 21555. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipdir.f 𝐾 = (Base‘𝐹)
ipass.s · = ( ·𝑠𝑊)
ipass.p × = (.r𝐹)
ipassr.i = (*𝑟𝐹)
Assertion
Ref Expression
ipassr2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ((𝐴 , 𝐵) × 𝐶) = (𝐴 , (( 𝐶) · 𝐵)))

Proof of Theorem ipassr2
StepHypRef Expression
1 simpl 482 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝑊 ∈ PreHil)
2 simpr1 1195 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝐴𝑉)
3 simpr2 1196 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝐵𝑉)
4 phlsrng.f . . . . 5 𝐹 = (Scalar‘𝑊)
54phlsrng 21540 . . . 4 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
6 simpr3 1197 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → 𝐶𝐾)
7 ipassr.i . . . . 5 = (*𝑟𝐹)
8 ipdir.f . . . . 5 𝐾 = (Base‘𝐹)
97, 8srngcl 20758 . . . 4 ((𝐹 ∈ *-Ring ∧ 𝐶𝐾) → ( 𝐶) ∈ 𝐾)
105, 6, 9syl2an2r 685 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ( 𝐶) ∈ 𝐾)
11 phllmhm.h . . . 4 , = (·𝑖𝑊)
12 phllmhm.v . . . 4 𝑉 = (Base‘𝑊)
13 ipass.s . . . 4 · = ( ·𝑠𝑊)
14 ipass.p . . . 4 × = (.r𝐹)
154, 11, 12, 8, 13, 14, 7ipassr 21555 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉 ∧ ( 𝐶) ∈ 𝐾)) → (𝐴 , (( 𝐶) · 𝐵)) = ((𝐴 , 𝐵) × ( ‘( 𝐶))))
161, 2, 3, 10, 15syl13anc 1374 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → (𝐴 , (( 𝐶) · 𝐵)) = ((𝐴 , 𝐵) × ( ‘( 𝐶))))
177, 8srngnvl 20759 . . . 4 ((𝐹 ∈ *-Ring ∧ 𝐶𝐾) → ( ‘( 𝐶)) = 𝐶)
185, 6, 17syl2an2r 685 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ( ‘( 𝐶)) = 𝐶)
1918oveq2d 7403 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ((𝐴 , 𝐵) × ( ‘( 𝐶))) = ((𝐴 , 𝐵) × 𝐶))
2016, 19eqtr2d 2765 1 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝐾)) → ((𝐴 , 𝐵) × 𝐶) = (𝐴 , (( 𝐶) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  .rcmulr 17221  *𝑟cstv 17222  Scalarcsca 17223   ·𝑠 cvsca 17224  ·𝑖cip 17225  *-Ringcsr 20747  PreHilcphl 21533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-ghm 19145  df-mgp 20050  df-ur 20091  df-ring 20144  df-oppr 20246  df-rhm 20381  df-staf 20748  df-srng 20749  df-lmod 20768  df-lmhm 20929  df-lvec 21010  df-sra 21080  df-rgmod 21081  df-phl 21535
This theorem is referenced by:  ipcau2  25134
  Copyright terms: Public domain W3C validator