Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ipassr2 | Structured version Visualization version GIF version |
Description: "Associative" law for inner product. Conjugate version of ipassr 20896. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
ipdir.f | ⊢ 𝐾 = (Base‘𝐹) |
ipass.s | ⊢ · = ( ·𝑠 ‘𝑊) |
ipass.p | ⊢ × = (.r‘𝐹) |
ipassr.i | ⊢ ∗ = (*𝑟‘𝐹) |
Ref | Expression |
---|---|
ipassr2 | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ((𝐴 , 𝐵) × 𝐶) = (𝐴 , (( ∗ ‘𝐶) · 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝑊 ∈ PreHil) | |
2 | simpr1 1194 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐴 ∈ 𝑉) | |
3 | simpr2 1195 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐵 ∈ 𝑉) | |
4 | phlsrng.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | 4 | phlsrng 20881 | . . . 4 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
6 | simpr3 1196 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐶 ∈ 𝐾) | |
7 | ipassr.i | . . . . 5 ⊢ ∗ = (*𝑟‘𝐹) | |
8 | ipdir.f | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
9 | 7, 8 | srngcl 20160 | . . . 4 ⊢ ((𝐹 ∈ *-Ring ∧ 𝐶 ∈ 𝐾) → ( ∗ ‘𝐶) ∈ 𝐾) |
10 | 5, 6, 9 | syl2an2r 683 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘𝐶) ∈ 𝐾) |
11 | phllmhm.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
12 | phllmhm.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
13 | ipass.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
14 | ipass.p | . . . 4 ⊢ × = (.r‘𝐹) | |
15 | 4, 11, 12, 8, 13, 14, 7 | ipassr 20896 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ ( ∗ ‘𝐶) ∈ 𝐾)) → (𝐴 , (( ∗ ‘𝐶) · 𝐵)) = ((𝐴 , 𝐵) × ( ∗ ‘( ∗ ‘𝐶)))) |
16 | 1, 2, 3, 10, 15 | syl13anc 1372 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐴 , (( ∗ ‘𝐶) · 𝐵)) = ((𝐴 , 𝐵) × ( ∗ ‘( ∗ ‘𝐶)))) |
17 | 7, 8 | srngnvl 20161 | . . . 4 ⊢ ((𝐹 ∈ *-Ring ∧ 𝐶 ∈ 𝐾) → ( ∗ ‘( ∗ ‘𝐶)) = 𝐶) |
18 | 5, 6, 17 | syl2an2r 683 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘( ∗ ‘𝐶)) = 𝐶) |
19 | 18 | oveq2d 7323 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ((𝐴 , 𝐵) × ( ∗ ‘( ∗ ‘𝐶))) = ((𝐴 , 𝐵) × 𝐶)) |
20 | 16, 19 | eqtr2d 2777 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ((𝐴 , 𝐵) × 𝐶) = (𝐴 , (( ∗ ‘𝐶) · 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 .rcmulr 17008 *𝑟cstv 17009 Scalarcsca 17010 ·𝑠 cvsca 17011 ·𝑖cip 17012 *-Ringcsr 20149 PreHilcphl 20874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-tpos 8073 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-plusg 17020 df-mulr 17021 df-sca 17023 df-vsca 17024 df-ip 17025 df-0g 17197 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-mhm 18475 df-ghm 18877 df-mgp 19766 df-ur 19783 df-ring 19830 df-oppr 19907 df-rnghom 20004 df-staf 20150 df-srng 20151 df-lmod 20170 df-lmhm 20329 df-lvec 20410 df-sra 20479 df-rgmod 20480 df-phl 20876 |
This theorem is referenced by: ipcau2 24443 |
Copyright terms: Public domain | W3C validator |