Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ipassr2 | Structured version Visualization version GIF version |
Description: "Associative" law for inner product. Conjugate version of ipassr 20412. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
ipdir.f | ⊢ 𝐾 = (Base‘𝐹) |
ipass.s | ⊢ · = ( ·𝑠 ‘𝑊) |
ipass.p | ⊢ × = (.r‘𝐹) |
ipassr.i | ⊢ ∗ = (*𝑟‘𝐹) |
Ref | Expression |
---|---|
ipassr2 | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ((𝐴 , 𝐵) × 𝐶) = (𝐴 , (( ∗ ‘𝐶) · 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 487 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝑊 ∈ PreHil) | |
2 | simpr1 1192 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐴 ∈ 𝑉) | |
3 | simpr2 1193 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐵 ∈ 𝑉) | |
4 | phlsrng.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | 4 | phlsrng 20397 | . . . 4 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
6 | simpr3 1194 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐶 ∈ 𝐾) | |
7 | ipassr.i | . . . . 5 ⊢ ∗ = (*𝑟‘𝐹) | |
8 | ipdir.f | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
9 | 7, 8 | srngcl 19695 | . . . 4 ⊢ ((𝐹 ∈ *-Ring ∧ 𝐶 ∈ 𝐾) → ( ∗ ‘𝐶) ∈ 𝐾) |
10 | 5, 6, 9 | syl2an2r 685 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘𝐶) ∈ 𝐾) |
11 | phllmhm.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
12 | phllmhm.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
13 | ipass.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
14 | ipass.p | . . . 4 ⊢ × = (.r‘𝐹) | |
15 | 4, 11, 12, 8, 13, 14, 7 | ipassr 20412 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ ( ∗ ‘𝐶) ∈ 𝐾)) → (𝐴 , (( ∗ ‘𝐶) · 𝐵)) = ((𝐴 , 𝐵) × ( ∗ ‘( ∗ ‘𝐶)))) |
16 | 1, 2, 3, 10, 15 | syl13anc 1370 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐴 , (( ∗ ‘𝐶) · 𝐵)) = ((𝐴 , 𝐵) × ( ∗ ‘( ∗ ‘𝐶)))) |
17 | 7, 8 | srngnvl 19696 | . . . 4 ⊢ ((𝐹 ∈ *-Ring ∧ 𝐶 ∈ 𝐾) → ( ∗ ‘( ∗ ‘𝐶)) = 𝐶) |
18 | 5, 6, 17 | syl2an2r 685 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘( ∗ ‘𝐶)) = 𝐶) |
19 | 18 | oveq2d 7167 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ((𝐴 , 𝐵) × ( ∗ ‘( ∗ ‘𝐶))) = ((𝐴 , 𝐵) × 𝐶)) |
20 | 16, 19 | eqtr2d 2795 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ((𝐴 , 𝐵) × 𝐶) = (𝐴 , (( ∗ ‘𝐶) · 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ‘cfv 6336 (class class class)co 7151 Basecbs 16542 .rcmulr 16625 *𝑟cstv 16626 Scalarcsca 16627 ·𝑠 cvsca 16628 ·𝑖cip 16629 *-Ringcsr 19684 PreHilcphl 20390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-tpos 7903 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-map 8419 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-nn 11676 df-2 11738 df-3 11739 df-4 11740 df-5 11741 df-6 11742 df-7 11743 df-8 11744 df-ndx 16545 df-slot 16546 df-base 16548 df-sets 16549 df-plusg 16637 df-mulr 16638 df-sca 16640 df-vsca 16641 df-ip 16642 df-0g 16774 df-mgm 17919 df-sgrp 17968 df-mnd 17979 df-mhm 18023 df-ghm 18424 df-mgp 19309 df-ur 19321 df-ring 19368 df-oppr 19445 df-rnghom 19539 df-staf 19685 df-srng 19686 df-lmod 19705 df-lmhm 19863 df-lvec 19944 df-sra 20013 df-rgmod 20014 df-phl 20392 |
This theorem is referenced by: ipcau2 23935 |
Copyright terms: Public domain | W3C validator |