![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iporthcom | Structured version Visualization version GIF version |
Description: Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
ip0l.z | ⊢ 𝑍 = (0g‘𝐹) |
Ref | Expression |
---|---|
iporthcom | ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = 𝑍 ↔ (𝐵 , 𝐴) = 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | phlsrng 20374 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
3 | 2 | 3ad2ant1 1124 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ *-Ring) |
4 | eqid 2777 | . . . . 5 ⊢ (*rf‘𝐹) = (*rf‘𝐹) | |
5 | eqid 2777 | . . . . 5 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
6 | 4, 5 | srngf1o 19246 | . . . 4 ⊢ (𝐹 ∈ *-Ring → (*rf‘𝐹):(Base‘𝐹)–1-1-onto→(Base‘𝐹)) |
7 | f1of1 6390 | . . . 4 ⊢ ((*rf‘𝐹):(Base‘𝐹)–1-1-onto→(Base‘𝐹) → (*rf‘𝐹):(Base‘𝐹)–1-1→(Base‘𝐹)) | |
8 | 3, 6, 7 | 3syl 18 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (*rf‘𝐹):(Base‘𝐹)–1-1→(Base‘𝐹)) |
9 | phllmhm.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
10 | phllmhm.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
11 | 1, 9, 10, 5 | ipcl 20376 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ (Base‘𝐹)) |
12 | phllmod 20373 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
13 | 12 | 3ad2ant1 1124 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝑊 ∈ LMod) |
14 | ip0l.z | . . . . 5 ⊢ 𝑍 = (0g‘𝐹) | |
15 | 1, 5, 14 | lmod0cl 19281 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑍 ∈ (Base‘𝐹)) |
16 | 13, 15 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝑍 ∈ (Base‘𝐹)) |
17 | f1fveq 6791 | . . 3 ⊢ (((*rf‘𝐹):(Base‘𝐹)–1-1→(Base‘𝐹) ∧ ((𝐴 , 𝐵) ∈ (Base‘𝐹) ∧ 𝑍 ∈ (Base‘𝐹))) → (((*rf‘𝐹)‘(𝐴 , 𝐵)) = ((*rf‘𝐹)‘𝑍) ↔ (𝐴 , 𝐵) = 𝑍)) | |
18 | 8, 11, 16, 17 | syl12anc 827 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (((*rf‘𝐹)‘(𝐴 , 𝐵)) = ((*rf‘𝐹)‘𝑍) ↔ (𝐴 , 𝐵) = 𝑍)) |
19 | eqid 2777 | . . . . . 6 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
20 | 5, 19, 4 | stafval 19240 | . . . . 5 ⊢ ((𝐴 , 𝐵) ∈ (Base‘𝐹) → ((*rf‘𝐹)‘(𝐴 , 𝐵)) = ((*𝑟‘𝐹)‘(𝐴 , 𝐵))) |
21 | 11, 20 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*rf‘𝐹)‘(𝐴 , 𝐵)) = ((*𝑟‘𝐹)‘(𝐴 , 𝐵))) |
22 | 1, 9, 10, 19 | ipcj 20377 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)) |
23 | 21, 22 | eqtrd 2813 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*rf‘𝐹)‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)) |
24 | 5, 19, 4 | stafval 19240 | . . . . 5 ⊢ (𝑍 ∈ (Base‘𝐹) → ((*rf‘𝐹)‘𝑍) = ((*𝑟‘𝐹)‘𝑍)) |
25 | 16, 24 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*rf‘𝐹)‘𝑍) = ((*𝑟‘𝐹)‘𝑍)) |
26 | 19, 14 | srng0 19252 | . . . . 5 ⊢ (𝐹 ∈ *-Ring → ((*𝑟‘𝐹)‘𝑍) = 𝑍) |
27 | 3, 26 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*𝑟‘𝐹)‘𝑍) = 𝑍) |
28 | 25, 27 | eqtrd 2813 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*rf‘𝐹)‘𝑍) = 𝑍) |
29 | 23, 28 | eqeq12d 2792 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (((*rf‘𝐹)‘(𝐴 , 𝐵)) = ((*rf‘𝐹)‘𝑍) ↔ (𝐵 , 𝐴) = 𝑍)) |
30 | 18, 29 | bitr3d 273 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = 𝑍 ↔ (𝐵 , 𝐴) = 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1071 = wceq 1601 ∈ wcel 2106 –1-1→wf1 6132 –1-1-onto→wf1o 6134 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 *𝑟cstv 16340 Scalarcsca 16341 ·𝑖cip 16343 0gc0g 16486 *rfcstf 19235 *-Ringcsr 19236 LModclmod 19255 PreHilcphl 20367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-tpos 7634 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-plusg 16351 df-mulr 16352 df-sca 16354 df-vsca 16355 df-ip 16356 df-0g 16488 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-mhm 17721 df-grp 17812 df-ghm 18042 df-mgp 18877 df-ur 18889 df-ring 18936 df-oppr 19010 df-rnghom 19104 df-staf 19237 df-srng 19238 df-lmod 19257 df-lmhm 19417 df-lvec 19498 df-sra 19569 df-rgmod 19570 df-phl 20369 |
This theorem is referenced by: ocvocv 20414 lsmcss 20435 cphorthcom 23408 |
Copyright terms: Public domain | W3C validator |