MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iporthcom Structured version   Visualization version   GIF version

Theorem iporthcom 21623
Description: Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ip0l.z 𝑍 = (0g𝐹)
Assertion
Ref Expression
iporthcom ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 , 𝐵) = 𝑍 ↔ (𝐵 , 𝐴) = 𝑍))

Proof of Theorem iporthcom
StepHypRef Expression
1 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
21phlsrng 21619 . . . . 5 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
323ad2ant1 1130 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝐹 ∈ *-Ring)
4 eqid 2725 . . . . 5 (*rf𝐹) = (*rf𝐹)
5 eqid 2725 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
64, 5srngf1o 20774 . . . 4 (𝐹 ∈ *-Ring → (*rf𝐹):(Base‘𝐹)–1-1-onto→(Base‘𝐹))
7 f1of1 6841 . . . 4 ((*rf𝐹):(Base‘𝐹)–1-1-onto→(Base‘𝐹) → (*rf𝐹):(Base‘𝐹)–1-1→(Base‘𝐹))
83, 6, 73syl 18 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (*rf𝐹):(Base‘𝐹)–1-1→(Base‘𝐹))
9 phllmhm.h . . . 4 , = (·𝑖𝑊)
10 phllmhm.v . . . 4 𝑉 = (Base‘𝑊)
111, 9, 10, 5ipcl 21621 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ (Base‘𝐹))
12 phllmod 21618 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
13123ad2ant1 1130 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝑊 ∈ LMod)
14 ip0l.z . . . . 5 𝑍 = (0g𝐹)
151, 5, 14lmod0cl 20811 . . . 4 (𝑊 ∈ LMod → 𝑍 ∈ (Base‘𝐹))
1613, 15syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝑍 ∈ (Base‘𝐹))
17 f1fveq 7276 . . 3 (((*rf𝐹):(Base‘𝐹)–1-1→(Base‘𝐹) ∧ ((𝐴 , 𝐵) ∈ (Base‘𝐹) ∧ 𝑍 ∈ (Base‘𝐹))) → (((*rf𝐹)‘(𝐴 , 𝐵)) = ((*rf𝐹)‘𝑍) ↔ (𝐴 , 𝐵) = 𝑍))
188, 11, 16, 17syl12anc 835 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((*rf𝐹)‘(𝐴 , 𝐵)) = ((*rf𝐹)‘𝑍) ↔ (𝐴 , 𝐵) = 𝑍))
19 eqid 2725 . . . . . 6 (*𝑟𝐹) = (*𝑟𝐹)
205, 19, 4stafval 20768 . . . . 5 ((𝐴 , 𝐵) ∈ (Base‘𝐹) → ((*rf𝐹)‘(𝐴 , 𝐵)) = ((*𝑟𝐹)‘(𝐴 , 𝐵)))
2111, 20syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*rf𝐹)‘(𝐴 , 𝐵)) = ((*𝑟𝐹)‘(𝐴 , 𝐵)))
221, 9, 10, 19ipcj 21622 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*𝑟𝐹)‘(𝐴 , 𝐵)) = (𝐵 , 𝐴))
2321, 22eqtrd 2765 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*rf𝐹)‘(𝐴 , 𝐵)) = (𝐵 , 𝐴))
245, 19, 4stafval 20768 . . . . 5 (𝑍 ∈ (Base‘𝐹) → ((*rf𝐹)‘𝑍) = ((*𝑟𝐹)‘𝑍))
2516, 24syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*rf𝐹)‘𝑍) = ((*𝑟𝐹)‘𝑍))
2619, 14srng0 20780 . . . . 5 (𝐹 ∈ *-Ring → ((*𝑟𝐹)‘𝑍) = 𝑍)
273, 26syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*𝑟𝐹)‘𝑍) = 𝑍)
2825, 27eqtrd 2765 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*rf𝐹)‘𝑍) = 𝑍)
2923, 28eqeq12d 2741 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((*rf𝐹)‘(𝐴 , 𝐵)) = ((*rf𝐹)‘𝑍) ↔ (𝐵 , 𝐴) = 𝑍))
3018, 29bitr3d 280 1 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 , 𝐵) = 𝑍 ↔ (𝐵 , 𝐴) = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084   = wceq 1533  wcel 2098  1-1wf1 6550  1-1-ontowf1o 6552  cfv 6553  (class class class)co 7423  Basecbs 17208  *𝑟cstv 17263  Scalarcsca 17264  ·𝑖cip 17266  0gc0g 17449  *rfcstf 20763  *-Ringcsr 20764  LModclmod 20783  PreHilcphl 21612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-om 7876  df-1st 8002  df-2nd 8003  df-tpos 8240  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-er 8733  df-map 8856  df-en 8974  df-dom 8975  df-sdom 8976  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-nn 12260  df-2 12322  df-3 12323  df-4 12324  df-5 12325  df-6 12326  df-7 12327  df-8 12328  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-plusg 17274  df-mulr 17275  df-sca 17277  df-vsca 17278  df-ip 17279  df-0g 17451  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-mhm 18768  df-grp 18926  df-ghm 19202  df-mgp 20113  df-ur 20160  df-ring 20213  df-oppr 20311  df-rhm 20449  df-staf 20765  df-srng 20766  df-lmod 20785  df-lmhm 20947  df-lvec 21028  df-sra 21098  df-rgmod 21099  df-phl 21614
This theorem is referenced by:  ocvocv  21659  lsmcss  21680  cphorthcom  25212
  Copyright terms: Public domain W3C validator