![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iporthcom | Structured version Visualization version GIF version |
Description: Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | β’ πΉ = (Scalarβπ) |
phllmhm.h | β’ , = (Β·πβπ) |
phllmhm.v | β’ π = (Baseβπ) |
ip0l.z | β’ π = (0gβπΉ) |
Ref | Expression |
---|---|
iporthcom | β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β ((π΄ , π΅) = π β (π΅ , π΄) = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phlsrng.f | . . . . . 6 β’ πΉ = (Scalarβπ) | |
2 | 1 | phlsrng 21524 | . . . . 5 β’ (π β PreHil β πΉ β *-Ring) |
3 | 2 | 3ad2ant1 1130 | . . . 4 β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β πΉ β *-Ring) |
4 | eqid 2726 | . . . . 5 β’ (*rfβπΉ) = (*rfβπΉ) | |
5 | eqid 2726 | . . . . 5 β’ (BaseβπΉ) = (BaseβπΉ) | |
6 | 4, 5 | srngf1o 20697 | . . . 4 β’ (πΉ β *-Ring β (*rfβπΉ):(BaseβπΉ)β1-1-ontoβ(BaseβπΉ)) |
7 | f1of1 6826 | . . . 4 β’ ((*rfβπΉ):(BaseβπΉ)β1-1-ontoβ(BaseβπΉ) β (*rfβπΉ):(BaseβπΉ)β1-1β(BaseβπΉ)) | |
8 | 3, 6, 7 | 3syl 18 | . . 3 β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β (*rfβπΉ):(BaseβπΉ)β1-1β(BaseβπΉ)) |
9 | phllmhm.h | . . . 4 β’ , = (Β·πβπ) | |
10 | phllmhm.v | . . . 4 β’ π = (Baseβπ) | |
11 | 1, 9, 10, 5 | ipcl 21526 | . . 3 β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β (π΄ , π΅) β (BaseβπΉ)) |
12 | phllmod 21523 | . . . . 5 β’ (π β PreHil β π β LMod) | |
13 | 12 | 3ad2ant1 1130 | . . . 4 β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β π β LMod) |
14 | ip0l.z | . . . . 5 β’ π = (0gβπΉ) | |
15 | 1, 5, 14 | lmod0cl 20734 | . . . 4 β’ (π β LMod β π β (BaseβπΉ)) |
16 | 13, 15 | syl 17 | . . 3 β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β π β (BaseβπΉ)) |
17 | f1fveq 7257 | . . 3 β’ (((*rfβπΉ):(BaseβπΉ)β1-1β(BaseβπΉ) β§ ((π΄ , π΅) β (BaseβπΉ) β§ π β (BaseβπΉ))) β (((*rfβπΉ)β(π΄ , π΅)) = ((*rfβπΉ)βπ) β (π΄ , π΅) = π)) | |
18 | 8, 11, 16, 17 | syl12anc 834 | . 2 β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β (((*rfβπΉ)β(π΄ , π΅)) = ((*rfβπΉ)βπ) β (π΄ , π΅) = π)) |
19 | eqid 2726 | . . . . . 6 β’ (*πβπΉ) = (*πβπΉ) | |
20 | 5, 19, 4 | stafval 20691 | . . . . 5 β’ ((π΄ , π΅) β (BaseβπΉ) β ((*rfβπΉ)β(π΄ , π΅)) = ((*πβπΉ)β(π΄ , π΅))) |
21 | 11, 20 | syl 17 | . . . 4 β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β ((*rfβπΉ)β(π΄ , π΅)) = ((*πβπΉ)β(π΄ , π΅))) |
22 | 1, 9, 10, 19 | ipcj 21527 | . . . 4 β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β ((*πβπΉ)β(π΄ , π΅)) = (π΅ , π΄)) |
23 | 21, 22 | eqtrd 2766 | . . 3 β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β ((*rfβπΉ)β(π΄ , π΅)) = (π΅ , π΄)) |
24 | 5, 19, 4 | stafval 20691 | . . . . 5 β’ (π β (BaseβπΉ) β ((*rfβπΉ)βπ) = ((*πβπΉ)βπ)) |
25 | 16, 24 | syl 17 | . . . 4 β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β ((*rfβπΉ)βπ) = ((*πβπΉ)βπ)) |
26 | 19, 14 | srng0 20703 | . . . . 5 β’ (πΉ β *-Ring β ((*πβπΉ)βπ) = π) |
27 | 3, 26 | syl 17 | . . . 4 β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β ((*πβπΉ)βπ) = π) |
28 | 25, 27 | eqtrd 2766 | . . 3 β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β ((*rfβπΉ)βπ) = π) |
29 | 23, 28 | eqeq12d 2742 | . 2 β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β (((*rfβπΉ)β(π΄ , π΅)) = ((*rfβπΉ)βπ) β (π΅ , π΄) = π)) |
30 | 18, 29 | bitr3d 281 | 1 β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β ((π΄ , π΅) = π β (π΅ , π΄) = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1084 = wceq 1533 β wcel 2098 β1-1βwf1 6534 β1-1-ontoβwf1o 6536 βcfv 6537 (class class class)co 7405 Basecbs 17153 *πcstv 17208 Scalarcsca 17209 Β·πcip 17211 0gc0g 17394 *rfcstf 20686 *-Ringcsr 20687 LModclmod 20706 PreHilcphl 21517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-tpos 8212 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-plusg 17219 df-mulr 17220 df-sca 17222 df-vsca 17223 df-ip 17224 df-0g 17396 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18713 df-grp 18866 df-ghm 19139 df-mgp 20040 df-ur 20087 df-ring 20140 df-oppr 20236 df-rhm 20374 df-staf 20688 df-srng 20689 df-lmod 20708 df-lmhm 20870 df-lvec 20951 df-sra 21021 df-rgmod 21022 df-phl 21519 |
This theorem is referenced by: ocvocv 21564 lsmcss 21585 cphorthcom 25084 |
Copyright terms: Public domain | W3C validator |