MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iporthcom Structured version   Visualization version   GIF version

Theorem iporthcom 20322
Description: Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ip0l.z 𝑍 = (0g𝐹)
Assertion
Ref Expression
iporthcom ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 , 𝐵) = 𝑍 ↔ (𝐵 , 𝐴) = 𝑍))

Proof of Theorem iporthcom
StepHypRef Expression
1 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
21phlsrng 20318 . . . . 5 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
323ad2ant1 1130 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝐹 ∈ *-Ring)
4 eqid 2822 . . . . 5 (*rf𝐹) = (*rf𝐹)
5 eqid 2822 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
64, 5srngf1o 19616 . . . 4 (𝐹 ∈ *-Ring → (*rf𝐹):(Base‘𝐹)–1-1-onto→(Base‘𝐹))
7 f1of1 6596 . . . 4 ((*rf𝐹):(Base‘𝐹)–1-1-onto→(Base‘𝐹) → (*rf𝐹):(Base‘𝐹)–1-1→(Base‘𝐹))
83, 6, 73syl 18 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (*rf𝐹):(Base‘𝐹)–1-1→(Base‘𝐹))
9 phllmhm.h . . . 4 , = (·𝑖𝑊)
10 phllmhm.v . . . 4 𝑉 = (Base‘𝑊)
111, 9, 10, 5ipcl 20320 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ (Base‘𝐹))
12 phllmod 20317 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
13123ad2ant1 1130 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝑊 ∈ LMod)
14 ip0l.z . . . . 5 𝑍 = (0g𝐹)
151, 5, 14lmod0cl 19651 . . . 4 (𝑊 ∈ LMod → 𝑍 ∈ (Base‘𝐹))
1613, 15syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝑍 ∈ (Base‘𝐹))
17 f1fveq 7003 . . 3 (((*rf𝐹):(Base‘𝐹)–1-1→(Base‘𝐹) ∧ ((𝐴 , 𝐵) ∈ (Base‘𝐹) ∧ 𝑍 ∈ (Base‘𝐹))) → (((*rf𝐹)‘(𝐴 , 𝐵)) = ((*rf𝐹)‘𝑍) ↔ (𝐴 , 𝐵) = 𝑍))
188, 11, 16, 17syl12anc 835 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((*rf𝐹)‘(𝐴 , 𝐵)) = ((*rf𝐹)‘𝑍) ↔ (𝐴 , 𝐵) = 𝑍))
19 eqid 2822 . . . . . 6 (*𝑟𝐹) = (*𝑟𝐹)
205, 19, 4stafval 19610 . . . . 5 ((𝐴 , 𝐵) ∈ (Base‘𝐹) → ((*rf𝐹)‘(𝐴 , 𝐵)) = ((*𝑟𝐹)‘(𝐴 , 𝐵)))
2111, 20syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*rf𝐹)‘(𝐴 , 𝐵)) = ((*𝑟𝐹)‘(𝐴 , 𝐵)))
221, 9, 10, 19ipcj 20321 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*𝑟𝐹)‘(𝐴 , 𝐵)) = (𝐵 , 𝐴))
2321, 22eqtrd 2857 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*rf𝐹)‘(𝐴 , 𝐵)) = (𝐵 , 𝐴))
245, 19, 4stafval 19610 . . . . 5 (𝑍 ∈ (Base‘𝐹) → ((*rf𝐹)‘𝑍) = ((*𝑟𝐹)‘𝑍))
2516, 24syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*rf𝐹)‘𝑍) = ((*𝑟𝐹)‘𝑍))
2619, 14srng0 19622 . . . . 5 (𝐹 ∈ *-Ring → ((*𝑟𝐹)‘𝑍) = 𝑍)
273, 26syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*𝑟𝐹)‘𝑍) = 𝑍)
2825, 27eqtrd 2857 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*rf𝐹)‘𝑍) = 𝑍)
2923, 28eqeq12d 2838 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((*rf𝐹)‘(𝐴 , 𝐵)) = ((*rf𝐹)‘𝑍) ↔ (𝐵 , 𝐴) = 𝑍))
3018, 29bitr3d 284 1 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 , 𝐵) = 𝑍 ↔ (𝐵 , 𝐴) = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2114  1-1wf1 6331  1-1-ontowf1o 6333  cfv 6334  (class class class)co 7140  Basecbs 16474  *𝑟cstv 16558  Scalarcsca 16559  ·𝑖cip 16561  0gc0g 16704  *rfcstf 19605  *-Ringcsr 19606  LModclmod 19625  PreHilcphl 20311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-plusg 16569  df-mulr 16570  df-sca 16572  df-vsca 16573  df-ip 16574  df-0g 16706  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-mhm 17947  df-grp 18097  df-ghm 18347  df-mgp 19231  df-ur 19243  df-ring 19290  df-oppr 19367  df-rnghom 19461  df-staf 19607  df-srng 19608  df-lmod 19627  df-lmhm 19785  df-lvec 19866  df-sra 19935  df-rgmod 19936  df-phl 20313
This theorem is referenced by:  ocvocv  20358  lsmcss  20379  cphorthcom  23804
  Copyright terms: Public domain W3C validator