MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iporthcom Structured version   Visualization version   GIF version

Theorem iporthcom 21600
Description: Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ip0l.z 𝑍 = (0g𝐹)
Assertion
Ref Expression
iporthcom ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 , 𝐵) = 𝑍 ↔ (𝐵 , 𝐴) = 𝑍))

Proof of Theorem iporthcom
StepHypRef Expression
1 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
21phlsrng 21596 . . . . 5 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
323ad2ant1 1133 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝐹 ∈ *-Ring)
4 eqid 2736 . . . . 5 (*rf𝐹) = (*rf𝐹)
5 eqid 2736 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
64, 5srngf1o 20813 . . . 4 (𝐹 ∈ *-Ring → (*rf𝐹):(Base‘𝐹)–1-1-onto→(Base‘𝐹))
7 f1of1 6822 . . . 4 ((*rf𝐹):(Base‘𝐹)–1-1-onto→(Base‘𝐹) → (*rf𝐹):(Base‘𝐹)–1-1→(Base‘𝐹))
83, 6, 73syl 18 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (*rf𝐹):(Base‘𝐹)–1-1→(Base‘𝐹))
9 phllmhm.h . . . 4 , = (·𝑖𝑊)
10 phllmhm.v . . . 4 𝑉 = (Base‘𝑊)
111, 9, 10, 5ipcl 21598 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ (Base‘𝐹))
12 phllmod 21595 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
13123ad2ant1 1133 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝑊 ∈ LMod)
14 ip0l.z . . . . 5 𝑍 = (0g𝐹)
151, 5, 14lmod0cl 20850 . . . 4 (𝑊 ∈ LMod → 𝑍 ∈ (Base‘𝐹))
1613, 15syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝑍 ∈ (Base‘𝐹))
17 f1fveq 7260 . . 3 (((*rf𝐹):(Base‘𝐹)–1-1→(Base‘𝐹) ∧ ((𝐴 , 𝐵) ∈ (Base‘𝐹) ∧ 𝑍 ∈ (Base‘𝐹))) → (((*rf𝐹)‘(𝐴 , 𝐵)) = ((*rf𝐹)‘𝑍) ↔ (𝐴 , 𝐵) = 𝑍))
188, 11, 16, 17syl12anc 836 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((*rf𝐹)‘(𝐴 , 𝐵)) = ((*rf𝐹)‘𝑍) ↔ (𝐴 , 𝐵) = 𝑍))
19 eqid 2736 . . . . . 6 (*𝑟𝐹) = (*𝑟𝐹)
205, 19, 4stafval 20807 . . . . 5 ((𝐴 , 𝐵) ∈ (Base‘𝐹) → ((*rf𝐹)‘(𝐴 , 𝐵)) = ((*𝑟𝐹)‘(𝐴 , 𝐵)))
2111, 20syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*rf𝐹)‘(𝐴 , 𝐵)) = ((*𝑟𝐹)‘(𝐴 , 𝐵)))
221, 9, 10, 19ipcj 21599 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*𝑟𝐹)‘(𝐴 , 𝐵)) = (𝐵 , 𝐴))
2321, 22eqtrd 2771 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*rf𝐹)‘(𝐴 , 𝐵)) = (𝐵 , 𝐴))
245, 19, 4stafval 20807 . . . . 5 (𝑍 ∈ (Base‘𝐹) → ((*rf𝐹)‘𝑍) = ((*𝑟𝐹)‘𝑍))
2516, 24syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*rf𝐹)‘𝑍) = ((*𝑟𝐹)‘𝑍))
2619, 14srng0 20819 . . . . 5 (𝐹 ∈ *-Ring → ((*𝑟𝐹)‘𝑍) = 𝑍)
273, 26syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*𝑟𝐹)‘𝑍) = 𝑍)
2825, 27eqtrd 2771 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*rf𝐹)‘𝑍) = 𝑍)
2923, 28eqeq12d 2752 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((*rf𝐹)‘(𝐴 , 𝐵)) = ((*rf𝐹)‘𝑍) ↔ (𝐵 , 𝐴) = 𝑍))
3018, 29bitr3d 281 1 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 , 𝐵) = 𝑍 ↔ (𝐵 , 𝐴) = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  1-1wf1 6533  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  Basecbs 17233  *𝑟cstv 17278  Scalarcsca 17279  ·𝑖cip 17281  0gc0g 17458  *rfcstf 20802  *-Ringcsr 20803  LModclmod 20822  PreHilcphl 21589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-ghm 19201  df-mgp 20106  df-ur 20147  df-ring 20200  df-oppr 20302  df-rhm 20437  df-staf 20804  df-srng 20805  df-lmod 20824  df-lmhm 20985  df-lvec 21066  df-sra 21136  df-rgmod 21137  df-phl 21591
This theorem is referenced by:  ocvocv  21636  lsmcss  21657  cphorthcom  25158
  Copyright terms: Public domain W3C validator