| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iporthcom | Structured version Visualization version GIF version | ||
| Description: Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
| phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
| ip0l.z | ⊢ 𝑍 = (0g‘𝐹) |
| Ref | Expression |
|---|---|
| iporthcom | ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = 𝑍 ↔ (𝐵 , 𝐴) = 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | phlsrng 21540 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
| 3 | 2 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ *-Ring) |
| 4 | eqid 2729 | . . . . 5 ⊢ (*rf‘𝐹) = (*rf‘𝐹) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 6 | 4, 5 | srngf1o 20757 | . . . 4 ⊢ (𝐹 ∈ *-Ring → (*rf‘𝐹):(Base‘𝐹)–1-1-onto→(Base‘𝐹)) |
| 7 | f1of1 6799 | . . . 4 ⊢ ((*rf‘𝐹):(Base‘𝐹)–1-1-onto→(Base‘𝐹) → (*rf‘𝐹):(Base‘𝐹)–1-1→(Base‘𝐹)) | |
| 8 | 3, 6, 7 | 3syl 18 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (*rf‘𝐹):(Base‘𝐹)–1-1→(Base‘𝐹)) |
| 9 | phllmhm.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
| 10 | phllmhm.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 11 | 1, 9, 10, 5 | ipcl 21542 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ (Base‘𝐹)) |
| 12 | phllmod 21539 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 13 | 12 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝑊 ∈ LMod) |
| 14 | ip0l.z | . . . . 5 ⊢ 𝑍 = (0g‘𝐹) | |
| 15 | 1, 5, 14 | lmod0cl 20794 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑍 ∈ (Base‘𝐹)) |
| 16 | 13, 15 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝑍 ∈ (Base‘𝐹)) |
| 17 | f1fveq 7237 | . . 3 ⊢ (((*rf‘𝐹):(Base‘𝐹)–1-1→(Base‘𝐹) ∧ ((𝐴 , 𝐵) ∈ (Base‘𝐹) ∧ 𝑍 ∈ (Base‘𝐹))) → (((*rf‘𝐹)‘(𝐴 , 𝐵)) = ((*rf‘𝐹)‘𝑍) ↔ (𝐴 , 𝐵) = 𝑍)) | |
| 18 | 8, 11, 16, 17 | syl12anc 836 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (((*rf‘𝐹)‘(𝐴 , 𝐵)) = ((*rf‘𝐹)‘𝑍) ↔ (𝐴 , 𝐵) = 𝑍)) |
| 19 | eqid 2729 | . . . . . 6 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
| 20 | 5, 19, 4 | stafval 20751 | . . . . 5 ⊢ ((𝐴 , 𝐵) ∈ (Base‘𝐹) → ((*rf‘𝐹)‘(𝐴 , 𝐵)) = ((*𝑟‘𝐹)‘(𝐴 , 𝐵))) |
| 21 | 11, 20 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*rf‘𝐹)‘(𝐴 , 𝐵)) = ((*𝑟‘𝐹)‘(𝐴 , 𝐵))) |
| 22 | 1, 9, 10, 19 | ipcj 21543 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)) |
| 23 | 21, 22 | eqtrd 2764 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*rf‘𝐹)‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)) |
| 24 | 5, 19, 4 | stafval 20751 | . . . . 5 ⊢ (𝑍 ∈ (Base‘𝐹) → ((*rf‘𝐹)‘𝑍) = ((*𝑟‘𝐹)‘𝑍)) |
| 25 | 16, 24 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*rf‘𝐹)‘𝑍) = ((*𝑟‘𝐹)‘𝑍)) |
| 26 | 19, 14 | srng0 20763 | . . . . 5 ⊢ (𝐹 ∈ *-Ring → ((*𝑟‘𝐹)‘𝑍) = 𝑍) |
| 27 | 3, 26 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*𝑟‘𝐹)‘𝑍) = 𝑍) |
| 28 | 25, 27 | eqtrd 2764 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*rf‘𝐹)‘𝑍) = 𝑍) |
| 29 | 23, 28 | eqeq12d 2745 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (((*rf‘𝐹)‘(𝐴 , 𝐵)) = ((*rf‘𝐹)‘𝑍) ↔ (𝐵 , 𝐴) = 𝑍)) |
| 30 | 18, 29 | bitr3d 281 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = 𝑍 ↔ (𝐵 , 𝐴) = 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 –1-1→wf1 6508 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 *𝑟cstv 17222 Scalarcsca 17223 ·𝑖cip 17225 0gc0g 17402 *rfcstf 20746 *-Ringcsr 20747 LModclmod 20766 PreHilcphl 21533 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-ghm 19145 df-mgp 20050 df-ur 20091 df-ring 20144 df-oppr 20246 df-rhm 20381 df-staf 20748 df-srng 20749 df-lmod 20768 df-lmhm 20929 df-lvec 21010 df-sra 21080 df-rgmod 21081 df-phl 21535 |
| This theorem is referenced by: ocvocv 21580 lsmcss 21601 cphorthcom 25101 |
| Copyright terms: Public domain | W3C validator |