| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iporthcom | Structured version Visualization version GIF version | ||
| Description: Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
| phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
| ip0l.z | ⊢ 𝑍 = (0g‘𝐹) |
| Ref | Expression |
|---|---|
| iporthcom | ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = 𝑍 ↔ (𝐵 , 𝐴) = 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | phlsrng 21538 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
| 3 | 2 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ *-Ring) |
| 4 | eqid 2729 | . . . . 5 ⊢ (*rf‘𝐹) = (*rf‘𝐹) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 6 | 4, 5 | srngf1o 20733 | . . . 4 ⊢ (𝐹 ∈ *-Ring → (*rf‘𝐹):(Base‘𝐹)–1-1-onto→(Base‘𝐹)) |
| 7 | f1of1 6763 | . . . 4 ⊢ ((*rf‘𝐹):(Base‘𝐹)–1-1-onto→(Base‘𝐹) → (*rf‘𝐹):(Base‘𝐹)–1-1→(Base‘𝐹)) | |
| 8 | 3, 6, 7 | 3syl 18 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (*rf‘𝐹):(Base‘𝐹)–1-1→(Base‘𝐹)) |
| 9 | phllmhm.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
| 10 | phllmhm.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 11 | 1, 9, 10, 5 | ipcl 21540 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ (Base‘𝐹)) |
| 12 | phllmod 21537 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 13 | 12 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝑊 ∈ LMod) |
| 14 | ip0l.z | . . . . 5 ⊢ 𝑍 = (0g‘𝐹) | |
| 15 | 1, 5, 14 | lmod0cl 20791 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑍 ∈ (Base‘𝐹)) |
| 16 | 13, 15 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝑍 ∈ (Base‘𝐹)) |
| 17 | f1fveq 7199 | . . 3 ⊢ (((*rf‘𝐹):(Base‘𝐹)–1-1→(Base‘𝐹) ∧ ((𝐴 , 𝐵) ∈ (Base‘𝐹) ∧ 𝑍 ∈ (Base‘𝐹))) → (((*rf‘𝐹)‘(𝐴 , 𝐵)) = ((*rf‘𝐹)‘𝑍) ↔ (𝐴 , 𝐵) = 𝑍)) | |
| 18 | 8, 11, 16, 17 | syl12anc 836 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (((*rf‘𝐹)‘(𝐴 , 𝐵)) = ((*rf‘𝐹)‘𝑍) ↔ (𝐴 , 𝐵) = 𝑍)) |
| 19 | eqid 2729 | . . . . . 6 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
| 20 | 5, 19, 4 | stafval 20727 | . . . . 5 ⊢ ((𝐴 , 𝐵) ∈ (Base‘𝐹) → ((*rf‘𝐹)‘(𝐴 , 𝐵)) = ((*𝑟‘𝐹)‘(𝐴 , 𝐵))) |
| 21 | 11, 20 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*rf‘𝐹)‘(𝐴 , 𝐵)) = ((*𝑟‘𝐹)‘(𝐴 , 𝐵))) |
| 22 | 1, 9, 10, 19 | ipcj 21541 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)) |
| 23 | 21, 22 | eqtrd 2764 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*rf‘𝐹)‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)) |
| 24 | 5, 19, 4 | stafval 20727 | . . . . 5 ⊢ (𝑍 ∈ (Base‘𝐹) → ((*rf‘𝐹)‘𝑍) = ((*𝑟‘𝐹)‘𝑍)) |
| 25 | 16, 24 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*rf‘𝐹)‘𝑍) = ((*𝑟‘𝐹)‘𝑍)) |
| 26 | 19, 14 | srng0 20739 | . . . . 5 ⊢ (𝐹 ∈ *-Ring → ((*𝑟‘𝐹)‘𝑍) = 𝑍) |
| 27 | 3, 26 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*𝑟‘𝐹)‘𝑍) = 𝑍) |
| 28 | 25, 27 | eqtrd 2764 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*rf‘𝐹)‘𝑍) = 𝑍) |
| 29 | 23, 28 | eqeq12d 2745 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (((*rf‘𝐹)‘(𝐴 , 𝐵)) = ((*rf‘𝐹)‘𝑍) ↔ (𝐵 , 𝐴) = 𝑍)) |
| 30 | 18, 29 | bitr3d 281 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = 𝑍 ↔ (𝐵 , 𝐴) = 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 –1-1→wf1 6479 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 *𝑟cstv 17163 Scalarcsca 17164 ·𝑖cip 17166 0gc0g 17343 *rfcstf 20722 *-Ringcsr 20723 LModclmod 20763 PreHilcphl 21531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-grp 18815 df-ghm 19092 df-mgp 20026 df-ur 20067 df-ring 20120 df-oppr 20222 df-rhm 20357 df-staf 20724 df-srng 20725 df-lmod 20765 df-lmhm 20926 df-lvec 21007 df-sra 21077 df-rgmod 21078 df-phl 21533 |
| This theorem is referenced by: ocvocv 21578 lsmcss 21599 cphorthcom 25099 |
| Copyright terms: Public domain | W3C validator |