MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iporthcom Structured version   Visualization version   GIF version

Theorem iporthcom 20378
Description: Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ip0l.z 𝑍 = (0g𝐹)
Assertion
Ref Expression
iporthcom ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 , 𝐵) = 𝑍 ↔ (𝐵 , 𝐴) = 𝑍))

Proof of Theorem iporthcom
StepHypRef Expression
1 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
21phlsrng 20374 . . . . 5 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
323ad2ant1 1124 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝐹 ∈ *-Ring)
4 eqid 2777 . . . . 5 (*rf𝐹) = (*rf𝐹)
5 eqid 2777 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
64, 5srngf1o 19246 . . . 4 (𝐹 ∈ *-Ring → (*rf𝐹):(Base‘𝐹)–1-1-onto→(Base‘𝐹))
7 f1of1 6390 . . . 4 ((*rf𝐹):(Base‘𝐹)–1-1-onto→(Base‘𝐹) → (*rf𝐹):(Base‘𝐹)–1-1→(Base‘𝐹))
83, 6, 73syl 18 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (*rf𝐹):(Base‘𝐹)–1-1→(Base‘𝐹))
9 phllmhm.h . . . 4 , = (·𝑖𝑊)
10 phllmhm.v . . . 4 𝑉 = (Base‘𝑊)
111, 9, 10, 5ipcl 20376 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ (Base‘𝐹))
12 phllmod 20373 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
13123ad2ant1 1124 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝑊 ∈ LMod)
14 ip0l.z . . . . 5 𝑍 = (0g𝐹)
151, 5, 14lmod0cl 19281 . . . 4 (𝑊 ∈ LMod → 𝑍 ∈ (Base‘𝐹))
1613, 15syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝑍 ∈ (Base‘𝐹))
17 f1fveq 6791 . . 3 (((*rf𝐹):(Base‘𝐹)–1-1→(Base‘𝐹) ∧ ((𝐴 , 𝐵) ∈ (Base‘𝐹) ∧ 𝑍 ∈ (Base‘𝐹))) → (((*rf𝐹)‘(𝐴 , 𝐵)) = ((*rf𝐹)‘𝑍) ↔ (𝐴 , 𝐵) = 𝑍))
188, 11, 16, 17syl12anc 827 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((*rf𝐹)‘(𝐴 , 𝐵)) = ((*rf𝐹)‘𝑍) ↔ (𝐴 , 𝐵) = 𝑍))
19 eqid 2777 . . . . . 6 (*𝑟𝐹) = (*𝑟𝐹)
205, 19, 4stafval 19240 . . . . 5 ((𝐴 , 𝐵) ∈ (Base‘𝐹) → ((*rf𝐹)‘(𝐴 , 𝐵)) = ((*𝑟𝐹)‘(𝐴 , 𝐵)))
2111, 20syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*rf𝐹)‘(𝐴 , 𝐵)) = ((*𝑟𝐹)‘(𝐴 , 𝐵)))
221, 9, 10, 19ipcj 20377 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*𝑟𝐹)‘(𝐴 , 𝐵)) = (𝐵 , 𝐴))
2321, 22eqtrd 2813 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*rf𝐹)‘(𝐴 , 𝐵)) = (𝐵 , 𝐴))
245, 19, 4stafval 19240 . . . . 5 (𝑍 ∈ (Base‘𝐹) → ((*rf𝐹)‘𝑍) = ((*𝑟𝐹)‘𝑍))
2516, 24syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*rf𝐹)‘𝑍) = ((*𝑟𝐹)‘𝑍))
2619, 14srng0 19252 . . . . 5 (𝐹 ∈ *-Ring → ((*𝑟𝐹)‘𝑍) = 𝑍)
273, 26syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*𝑟𝐹)‘𝑍) = 𝑍)
2825, 27eqtrd 2813 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((*rf𝐹)‘𝑍) = 𝑍)
2923, 28eqeq12d 2792 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((*rf𝐹)‘(𝐴 , 𝐵)) = ((*rf𝐹)‘𝑍) ↔ (𝐵 , 𝐴) = 𝑍))
3018, 29bitr3d 273 1 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 , 𝐵) = 𝑍 ↔ (𝐵 , 𝐴) = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  w3a 1071   = wceq 1601  wcel 2106  1-1wf1 6132  1-1-ontowf1o 6134  cfv 6135  (class class class)co 6922  Basecbs 16255  *𝑟cstv 16340  Scalarcsca 16341  ·𝑖cip 16343  0gc0g 16486  *rfcstf 19235  *-Ringcsr 19236  LModclmod 19255  PreHilcphl 20367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-plusg 16351  df-mulr 16352  df-sca 16354  df-vsca 16355  df-ip 16356  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-grp 17812  df-ghm 18042  df-mgp 18877  df-ur 18889  df-ring 18936  df-oppr 19010  df-rnghom 19104  df-staf 19237  df-srng 19238  df-lmod 19257  df-lmhm 19417  df-lvec 19498  df-sra 19569  df-rgmod 19570  df-phl 20369
This theorem is referenced by:  ocvocv  20414  lsmcss  20435  cphorthcom  23408
  Copyright terms: Public domain W3C validator