| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > modprminv | Structured version Visualization version GIF version | ||
| Description: Show an explicit expression for the modular inverse of 𝐴 mod 𝑃. This is an application of prmdiv 16698. (Contributed by Alexander van der Vekens, 15-May-2018.) |
| Ref | Expression |
|---|---|
| modprminv.1 | ⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) |
| Ref | Expression |
|---|---|
| modprminv | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · 𝑅) mod 𝑃) = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modprminv.1 | . . 3 ⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) | |
| 2 | 1 | prmdiv 16698 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1))) |
| 3 | elfzelz 13426 | . . . . . . 7 ⊢ (𝑅 ∈ (1...(𝑃 − 1)) → 𝑅 ∈ ℤ) | |
| 4 | zmulcl 12527 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝐴 · 𝑅) ∈ ℤ) | |
| 5 | 3, 4 | sylan2 593 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑅 ∈ (1...(𝑃 − 1))) → (𝐴 · 𝑅) ∈ ℤ) |
| 6 | modprm1div 16711 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 · 𝑅) ∈ ℤ) → (((𝐴 · 𝑅) mod 𝑃) = 1 ↔ 𝑃 ∥ ((𝐴 · 𝑅) − 1))) | |
| 7 | 5, 6 | sylan2 593 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝑅 ∈ (1...(𝑃 − 1)))) → (((𝐴 · 𝑅) mod 𝑃) = 1 ↔ 𝑃 ∥ ((𝐴 · 𝑅) − 1))) |
| 8 | 7 | expr 456 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑅 ∈ (1...(𝑃 − 1)) → (((𝐴 · 𝑅) mod 𝑃) = 1 ↔ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))) |
| 9 | 8 | 3adant3 1132 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) → (((𝐴 · 𝑅) mod 𝑃) = 1 ↔ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))) |
| 10 | 9 | pm5.32d 577 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝑅 ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · 𝑅) mod 𝑃) = 1) ↔ (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))) |
| 11 | 2, 10 | mpbird 257 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · 𝑅) mod 𝑃) = 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 (class class class)co 7352 1c1 11014 · cmul 11018 − cmin 11351 2c2 12187 ℤcz 12475 ...cfz 13409 mod cmo 13775 ↑cexp 13970 ∥ cdvds 16165 ℙcprime 16584 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-dju 9801 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-xnn0 12462 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-dvds 16166 df-gcd 16408 df-prm 16585 df-phi 16679 |
| This theorem is referenced by: vfermltlALT 16716 powm2modprm 16717 reumodprminv 16718 |
| Copyright terms: Public domain | W3C validator |