MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzind Structured version   Visualization version   GIF version

Theorem fzind 11727
Description: Induction on the integers from 𝑀 to 𝑁 inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
fzind.1 (𝑥 = 𝑀 → (𝜑𝜓))
fzind.2 (𝑥 = 𝑦 → (𝜑𝜒))
fzind.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
fzind.4 (𝑥 = 𝐾 → (𝜑𝜏))
fzind.5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓)
fzind.6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → (𝜒𝜃))
Assertion
Ref Expression
fzind (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)) → 𝜏)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐾(𝑦)

Proof of Theorem fzind
StepHypRef Expression
1 breq1 4814 . . . . . . . . . . 11 (𝑥 = 𝑀 → (𝑥𝑁𝑀𝑁))
21anbi2d 622 . . . . . . . . . 10 (𝑥 = 𝑀 → ((𝑁 ∈ ℤ ∧ 𝑥𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
3 fzind.1 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝜑𝜓))
42, 3imbi12d 335 . . . . . . . . 9 (𝑥 = 𝑀 → (((𝑁 ∈ ℤ ∧ 𝑥𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓)))
5 breq1 4814 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝑁𝑦𝑁))
65anbi2d 622 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑁 ∈ ℤ ∧ 𝑥𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑦𝑁)))
7 fzind.2 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑𝜒))
86, 7imbi12d 335 . . . . . . . . 9 (𝑥 = 𝑦 → (((𝑁 ∈ ℤ ∧ 𝑥𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ 𝑦𝑁) → 𝜒)))
9 breq1 4814 . . . . . . . . . . 11 (𝑥 = (𝑦 + 1) → (𝑥𝑁 ↔ (𝑦 + 1) ≤ 𝑁))
109anbi2d 622 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → ((𝑁 ∈ ℤ ∧ 𝑥𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁)))
11 fzind.3 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
1210, 11imbi12d 335 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (((𝑁 ∈ ℤ ∧ 𝑥𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜃)))
13 breq1 4814 . . . . . . . . . . 11 (𝑥 = 𝐾 → (𝑥𝑁𝐾𝑁))
1413anbi2d 622 . . . . . . . . . 10 (𝑥 = 𝐾 → ((𝑁 ∈ ℤ ∧ 𝑥𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝐾𝑁)))
15 fzind.4 . . . . . . . . . 10 (𝑥 = 𝐾 → (𝜑𝜏))
1614, 15imbi12d 335 . . . . . . . . 9 (𝑥 = 𝐾 → (((𝑁 ∈ ℤ ∧ 𝑥𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ 𝐾𝑁) → 𝜏)))
17 fzind.5 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓)
18173expib 1152 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓))
19 zre 11632 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
20 zre 11632 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
21 p1le 11124 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑦 + 1) ≤ 𝑁) → 𝑦𝑁)
22213expia 1150 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑦 + 1) ≤ 𝑁𝑦𝑁))
2319, 20, 22syl2an 589 . . . . . . . . . . . . 13 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑦 + 1) ≤ 𝑁𝑦𝑁))
2423imdistanda 567 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → (𝑁 ∈ ℤ ∧ 𝑦𝑁)))
2524imim1d 82 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (((𝑁 ∈ ℤ ∧ 𝑦𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜒)))
26253ad2ant2 1164 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → (((𝑁 ∈ ℤ ∧ 𝑦𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜒)))
27 zltp1le 11679 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑦 < 𝑁 ↔ (𝑦 + 1) ≤ 𝑁))
2827adantlr 706 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑁 ∈ ℤ) → (𝑦 < 𝑁 ↔ (𝑦 + 1) ≤ 𝑁))
2928expcom 402 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → ((𝑦 ∈ ℤ ∧ 𝑀𝑦) → (𝑦 < 𝑁 ↔ (𝑦 + 1) ≤ 𝑁)))
3029pm5.32d 572 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑦 < 𝑁) ↔ ((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁)))
3130adantl 473 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑦 < 𝑁) ↔ ((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁)))
32 fzind.6 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → (𝜒𝜃))
3332expcom 402 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝜒𝜃)))
34333expa 1147 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑦 < 𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝜒𝜃)))
3534com12 32 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑦 < 𝑁) → (𝜒𝜃)))
3631, 35sylbird 251 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁) → (𝜒𝜃)))
3736ex 401 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁) → (𝜒𝜃))))
3837com23 86 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁) → (𝑁 ∈ ℤ → (𝜒𝜃))))
3938expd 404 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → ((𝑦 ∈ ℤ ∧ 𝑀𝑦) → ((𝑦 + 1) ≤ 𝑁 → (𝑁 ∈ ℤ → (𝜒𝜃)))))
40393impib 1144 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → ((𝑦 + 1) ≤ 𝑁 → (𝑁 ∈ ℤ → (𝜒𝜃))))
4140com23 86 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → (𝑁 ∈ ℤ → ((𝑦 + 1) ≤ 𝑁 → (𝜒𝜃))))
4241impd 398 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → (𝜒𝜃)))
4342a2d 29 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → (((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜃)))
4426, 43syld 47 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → (((𝑁 ∈ ℤ ∧ 𝑦𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜃)))
454, 8, 12, 16, 18, 44uzind 11721 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) → ((𝑁 ∈ ℤ ∧ 𝐾𝑁) → 𝜏))
4645expcomd 406 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝐾𝑁 → (𝑁 ∈ ℤ → 𝜏)))
47463expb 1149 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾)) → (𝐾𝑁 → (𝑁 ∈ ℤ → 𝜏)))
4847expcom 402 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝑀 ∈ ℤ → (𝐾𝑁 → (𝑁 ∈ ℤ → 𝜏))))
4948com23 86 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝐾𝑁 → (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → 𝜏))))
50493impia 1145 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) → (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → 𝜏)))
5150impd 398 . 2 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝜏))
5251impcom 396 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155   class class class wbr 4811  (class class class)co 6846  cr 10192  1c1 10194   + caddc 10196   < clt 10332  cle 10333  cz 11628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-er 7951  df-en 8165  df-dom 8166  df-sdom 8167  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-nn 11279  df-n0 11543  df-z 11629
This theorem is referenced by:  fnn0ind  11728  fzind2  12799  ssinc  39939  ssdec  39940
  Copyright terms: Public domain W3C validator