MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzind Structured version   Visualization version   GIF version

Theorem fzind 12632
Description: Induction on the integers from 𝑀 to 𝑁 inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
fzind.1 (𝑥 = 𝑀 → (𝜑𝜓))
fzind.2 (𝑥 = 𝑦 → (𝜑𝜒))
fzind.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
fzind.4 (𝑥 = 𝐾 → (𝜑𝜏))
fzind.5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓)
fzind.6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → (𝜒𝜃))
Assertion
Ref Expression
fzind (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)) → 𝜏)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐾(𝑦)

Proof of Theorem fzind
StepHypRef Expression
1 breq1 5110 . . . . . . . . . . 11 (𝑥 = 𝑀 → (𝑥𝑁𝑀𝑁))
21anbi2d 630 . . . . . . . . . 10 (𝑥 = 𝑀 → ((𝑁 ∈ ℤ ∧ 𝑥𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
3 fzind.1 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝜑𝜓))
42, 3imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑀 → (((𝑁 ∈ ℤ ∧ 𝑥𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓)))
5 breq1 5110 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝑁𝑦𝑁))
65anbi2d 630 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑁 ∈ ℤ ∧ 𝑥𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑦𝑁)))
7 fzind.2 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑𝜒))
86, 7imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑦 → (((𝑁 ∈ ℤ ∧ 𝑥𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ 𝑦𝑁) → 𝜒)))
9 breq1 5110 . . . . . . . . . . 11 (𝑥 = (𝑦 + 1) → (𝑥𝑁 ↔ (𝑦 + 1) ≤ 𝑁))
109anbi2d 630 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → ((𝑁 ∈ ℤ ∧ 𝑥𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁)))
11 fzind.3 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
1210, 11imbi12d 344 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (((𝑁 ∈ ℤ ∧ 𝑥𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜃)))
13 breq1 5110 . . . . . . . . . . 11 (𝑥 = 𝐾 → (𝑥𝑁𝐾𝑁))
1413anbi2d 630 . . . . . . . . . 10 (𝑥 = 𝐾 → ((𝑁 ∈ ℤ ∧ 𝑥𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝐾𝑁)))
15 fzind.4 . . . . . . . . . 10 (𝑥 = 𝐾 → (𝜑𝜏))
1614, 15imbi12d 344 . . . . . . . . 9 (𝑥 = 𝐾 → (((𝑁 ∈ ℤ ∧ 𝑥𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ 𝐾𝑁) → 𝜏)))
17 fzind.5 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓)
18173expib 1122 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓))
19 zre 12533 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
20 zre 12533 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
21 p1le 12027 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑦 + 1) ≤ 𝑁) → 𝑦𝑁)
22213expia 1121 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑦 + 1) ≤ 𝑁𝑦𝑁))
2319, 20, 22syl2an 596 . . . . . . . . . . . . 13 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑦 + 1) ≤ 𝑁𝑦𝑁))
2423imdistanda 571 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → (𝑁 ∈ ℤ ∧ 𝑦𝑁)))
2524imim1d 82 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (((𝑁 ∈ ℤ ∧ 𝑦𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜒)))
26253ad2ant2 1134 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → (((𝑁 ∈ ℤ ∧ 𝑦𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜒)))
27 zltp1le 12583 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑦 < 𝑁 ↔ (𝑦 + 1) ≤ 𝑁))
2827adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑁 ∈ ℤ) → (𝑦 < 𝑁 ↔ (𝑦 + 1) ≤ 𝑁))
2928expcom 413 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → ((𝑦 ∈ ℤ ∧ 𝑀𝑦) → (𝑦 < 𝑁 ↔ (𝑦 + 1) ≤ 𝑁)))
3029pm5.32d 577 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑦 < 𝑁) ↔ ((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁)))
3130adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑦 < 𝑁) ↔ ((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁)))
32 fzind.6 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → (𝜒𝜃))
3332expcom 413 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝜒𝜃)))
34333expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑦 < 𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝜒𝜃)))
3534com12 32 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑦 < 𝑁) → (𝜒𝜃)))
3631, 35sylbird 260 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁) → (𝜒𝜃)))
3736ex 412 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁) → (𝜒𝜃))))
3837com23 86 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁) → (𝑁 ∈ ℤ → (𝜒𝜃))))
3938expd 415 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → ((𝑦 ∈ ℤ ∧ 𝑀𝑦) → ((𝑦 + 1) ≤ 𝑁 → (𝑁 ∈ ℤ → (𝜒𝜃)))))
40393impib 1116 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → ((𝑦 + 1) ≤ 𝑁 → (𝑁 ∈ ℤ → (𝜒𝜃))))
4140impcomd 411 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → (𝜒𝜃)))
4241a2d 29 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → (((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜃)))
4326, 42syld 47 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → (((𝑁 ∈ ℤ ∧ 𝑦𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜃)))
444, 8, 12, 16, 18, 43uzind 12626 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) → ((𝑁 ∈ ℤ ∧ 𝐾𝑁) → 𝜏))
4544expcomd 416 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝐾𝑁 → (𝑁 ∈ ℤ → 𝜏)))
46453expb 1120 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾)) → (𝐾𝑁 → (𝑁 ∈ ℤ → 𝜏)))
4746expcom 413 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝑀 ∈ ℤ → (𝐾𝑁 → (𝑁 ∈ ℤ → 𝜏))))
4847com23 86 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝐾𝑁 → (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → 𝜏))))
49483impia 1117 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) → (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → 𝜏)))
5049impd 410 . 2 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝜏))
5150impcom 407 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  (class class class)co 7387  cr 11067  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cz 12529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530
This theorem is referenced by:  fnn0ind  12633  fzindd  12636  fzind2  13746  ssinc  45081  ssdec  45082
  Copyright terms: Public domain W3C validator