MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzind Structured version   Visualization version   GIF version

Theorem fzind 12418
Description: Induction on the integers from 𝑀 to 𝑁 inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
fzind.1 (𝑥 = 𝑀 → (𝜑𝜓))
fzind.2 (𝑥 = 𝑦 → (𝜑𝜒))
fzind.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
fzind.4 (𝑥 = 𝐾 → (𝜑𝜏))
fzind.5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓)
fzind.6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → (𝜒𝜃))
Assertion
Ref Expression
fzind (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)) → 𝜏)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐾(𝑦)

Proof of Theorem fzind
StepHypRef Expression
1 breq1 5077 . . . . . . . . . . 11 (𝑥 = 𝑀 → (𝑥𝑁𝑀𝑁))
21anbi2d 629 . . . . . . . . . 10 (𝑥 = 𝑀 → ((𝑁 ∈ ℤ ∧ 𝑥𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
3 fzind.1 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝜑𝜓))
42, 3imbi12d 345 . . . . . . . . 9 (𝑥 = 𝑀 → (((𝑁 ∈ ℤ ∧ 𝑥𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓)))
5 breq1 5077 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝑁𝑦𝑁))
65anbi2d 629 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑁 ∈ ℤ ∧ 𝑥𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑦𝑁)))
7 fzind.2 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑𝜒))
86, 7imbi12d 345 . . . . . . . . 9 (𝑥 = 𝑦 → (((𝑁 ∈ ℤ ∧ 𝑥𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ 𝑦𝑁) → 𝜒)))
9 breq1 5077 . . . . . . . . . . 11 (𝑥 = (𝑦 + 1) → (𝑥𝑁 ↔ (𝑦 + 1) ≤ 𝑁))
109anbi2d 629 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → ((𝑁 ∈ ℤ ∧ 𝑥𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁)))
11 fzind.3 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
1210, 11imbi12d 345 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (((𝑁 ∈ ℤ ∧ 𝑥𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜃)))
13 breq1 5077 . . . . . . . . . . 11 (𝑥 = 𝐾 → (𝑥𝑁𝐾𝑁))
1413anbi2d 629 . . . . . . . . . 10 (𝑥 = 𝐾 → ((𝑁 ∈ ℤ ∧ 𝑥𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝐾𝑁)))
15 fzind.4 . . . . . . . . . 10 (𝑥 = 𝐾 → (𝜑𝜏))
1614, 15imbi12d 345 . . . . . . . . 9 (𝑥 = 𝐾 → (((𝑁 ∈ ℤ ∧ 𝑥𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ 𝐾𝑁) → 𝜏)))
17 fzind.5 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓)
18173expib 1121 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓))
19 zre 12323 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
20 zre 12323 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
21 p1le 11820 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑦 + 1) ≤ 𝑁) → 𝑦𝑁)
22213expia 1120 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑦 + 1) ≤ 𝑁𝑦𝑁))
2319, 20, 22syl2an 596 . . . . . . . . . . . . 13 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑦 + 1) ≤ 𝑁𝑦𝑁))
2423imdistanda 572 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → (𝑁 ∈ ℤ ∧ 𝑦𝑁)))
2524imim1d 82 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (((𝑁 ∈ ℤ ∧ 𝑦𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜒)))
26253ad2ant2 1133 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → (((𝑁 ∈ ℤ ∧ 𝑦𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜒)))
27 zltp1le 12370 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑦 < 𝑁 ↔ (𝑦 + 1) ≤ 𝑁))
2827adantlr 712 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑁 ∈ ℤ) → (𝑦 < 𝑁 ↔ (𝑦 + 1) ≤ 𝑁))
2928expcom 414 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → ((𝑦 ∈ ℤ ∧ 𝑀𝑦) → (𝑦 < 𝑁 ↔ (𝑦 + 1) ≤ 𝑁)))
3029pm5.32d 577 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑦 < 𝑁) ↔ ((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁)))
3130adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑦 < 𝑁) ↔ ((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁)))
32 fzind.6 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → (𝜒𝜃))
3332expcom 414 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝜒𝜃)))
34333expa 1117 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑦 < 𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝜒𝜃)))
3534com12 32 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑦 < 𝑁) → (𝜒𝜃)))
3631, 35sylbird 259 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁) → (𝜒𝜃)))
3736ex 413 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁) → (𝜒𝜃))))
3837com23 86 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁) → (𝑁 ∈ ℤ → (𝜒𝜃))))
3938expd 416 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → ((𝑦 ∈ ℤ ∧ 𝑀𝑦) → ((𝑦 + 1) ≤ 𝑁 → (𝑁 ∈ ℤ → (𝜒𝜃)))))
40393impib 1115 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → ((𝑦 + 1) ≤ 𝑁 → (𝑁 ∈ ℤ → (𝜒𝜃))))
4140impcomd 412 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → (𝜒𝜃)))
4241a2d 29 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → (((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜃)))
4326, 42syld 47 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → (((𝑁 ∈ ℤ ∧ 𝑦𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜃)))
444, 8, 12, 16, 18, 43uzind 12412 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) → ((𝑁 ∈ ℤ ∧ 𝐾𝑁) → 𝜏))
4544expcomd 417 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝐾𝑁 → (𝑁 ∈ ℤ → 𝜏)))
46453expb 1119 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾)) → (𝐾𝑁 → (𝑁 ∈ ℤ → 𝜏)))
4746expcom 414 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝑀 ∈ ℤ → (𝐾𝑁 → (𝑁 ∈ ℤ → 𝜏))))
4847com23 86 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝐾𝑁 → (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → 𝜏))))
49483impia 1116 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) → (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → 𝜏)))
5049impd 411 . 2 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝜏))
5150impcom 408 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  (class class class)co 7275  cr 10870  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cz 12319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320
This theorem is referenced by:  fnn0ind  12419  fzindd  12422  fzind2  13505  ssinc  42637  ssdec  42638
  Copyright terms: Public domain W3C validator