MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzm11 Structured version   Visualization version   GIF version

Theorem elfzm11 12788
Description: Membership in a finite set of sequential integers. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
elfzm11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 < 𝑁)))

Proof of Theorem elfzm11
StepHypRef Expression
1 peano2zm 11832 . . 3 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
2 elfz1 12707 . . 3 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 ≤ (𝑁 − 1))))
31, 2sylan2 583 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 ≤ (𝑁 − 1))))
4 zltlem1 11842 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁𝐾 ≤ (𝑁 − 1)))
54anbi2d 619 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝐾 < 𝑁) ↔ (𝑀𝐾𝐾 ≤ (𝑁 − 1))))
65expcom 406 . . . . 5 (𝑁 ∈ ℤ → (𝐾 ∈ ℤ → ((𝑀𝐾𝐾 < 𝑁) ↔ (𝑀𝐾𝐾 ≤ (𝑁 − 1)))))
76pm5.32d 569 . . . 4 (𝑁 ∈ ℤ → ((𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾 < 𝑁)) ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾 ≤ (𝑁 − 1)))))
8 3anass 1076 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 < 𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾 < 𝑁)))
9 3anass 1076 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 ≤ (𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾 ≤ (𝑁 − 1))))
107, 8, 93bitr4g 306 . . 3 (𝑁 ∈ ℤ → ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 < 𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 ≤ (𝑁 − 1))))
1110adantl 474 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 < 𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 ≤ (𝑁 − 1))))
123, 11bitr4d 274 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 < 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068  wcel 2050   class class class wbr 4923  (class class class)co 6970  1c1 10330   < clt 10468  cle 10469  cmin 10664  cz 11787  ...cfz 12702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-er 8083  df-en 8301  df-dom 8302  df-sdom 8303  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-nn 11434  df-n0 11702  df-z 11788  df-fz 12703
This theorem is referenced by:  uzsplit  12789  uznfz  12800  zmodfz  13070  zmodid2  13076  seqf1olem2  13219  seqcoll  13629  rpnnen2lem10  15430  divalglem6  15603  divalglem7  15604  divalglem8  15605  4sqlem12  16142  4sqlem13  16143  dfod2  18446  ovolicc2lem4  23818  mersenne  25499  ostth2lem2  25906  prmdvdsbc  30279  ballotlem2  31392  acongrep  38973
  Copyright terms: Public domain W3C validator