| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isrngim2 | Structured version Visualization version GIF version | ||
| Description: An isomorphism of non-unital rings is a bijective homomorphism. (Contributed by AV, 23-Feb-2020.) |
| Ref | Expression |
|---|---|
| rnghmf1o.b | ⊢ 𝐵 = (Base‘𝑅) |
| rnghmf1o.c | ⊢ 𝐶 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| isrngim2 | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrngim 20364 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RngHom 𝑅)))) | |
| 2 | rnghmf1o.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | rnghmf1o.c | . . . . . 6 ⊢ 𝐶 = (Base‘𝑆) | |
| 4 | 2, 3 | rnghmf1o 20371 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 RngHom 𝑅))) |
| 5 | 4 | bicomd 223 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → (◡𝐹 ∈ (𝑆 RngHom 𝑅) ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
| 6 | 5 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐹 ∈ (𝑅 RngHom 𝑆) → (◡𝐹 ∈ (𝑆 RngHom 𝑅) ↔ 𝐹:𝐵–1-1-onto→𝐶))) |
| 7 | 6 | pm5.32d 577 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RngHom 𝑅)) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶))) |
| 8 | 1, 7 | bitrd 279 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ◡ccnv 5615 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 RngHom crnghm 20353 RngIso crngim 20354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mgm 18548 df-mgmhm 18600 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-ghm 19126 df-abl 19696 df-mgp 20060 df-rng 20072 df-rnghm 20355 df-rngim 20356 |
| This theorem is referenced by: rngimf1o 20373 rngimrnghm 20374 rimisrngim 20414 rngcinv 20553 rngqiprngim 21242 rngcinvALTV 48313 |
| Copyright terms: Public domain | W3C validator |