![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > indpi1 | Structured version Visualization version GIF version |
Description: Preimage of the singleton {1} by the indicator function. See i1f1lem 25701. (Contributed by Thierry Arnoux, 21-Aug-2017.) |
Ref | Expression |
---|---|
indpi1 | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (◡((𝟭‘𝑂)‘𝐴) “ {1}) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ind1a 33808 | . . . . 5 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑥 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) = 1 ↔ 𝑥 ∈ 𝐴)) | |
2 | 1 | 3expia 1118 | . . . 4 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (𝑥 ∈ 𝑂 → ((((𝟭‘𝑂)‘𝐴)‘𝑥) = 1 ↔ 𝑥 ∈ 𝐴))) |
3 | 2 | pm5.32d 575 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝑥 ∈ 𝑂 ∧ (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1) ↔ (𝑥 ∈ 𝑂 ∧ 𝑥 ∈ 𝐴))) |
4 | indf 33804 | . . . 4 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) | |
5 | ffn 6727 | . . . 4 ⊢ (((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1} → ((𝟭‘𝑂)‘𝐴) Fn 𝑂) | |
6 | fniniseg 7072 | . . . 4 ⊢ (((𝟭‘𝑂)‘𝐴) Fn 𝑂 → (𝑥 ∈ (◡((𝟭‘𝑂)‘𝐴) “ {1}) ↔ (𝑥 ∈ 𝑂 ∧ (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1))) | |
7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (𝑥 ∈ (◡((𝟭‘𝑂)‘𝐴) “ {1}) ↔ (𝑥 ∈ 𝑂 ∧ (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1))) |
8 | ssel 3972 | . . . . 5 ⊢ (𝐴 ⊆ 𝑂 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑂)) | |
9 | 8 | pm4.71rd 561 | . . . 4 ⊢ (𝐴 ⊆ 𝑂 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝑂 ∧ 𝑥 ∈ 𝐴))) |
10 | 9 | adantl 480 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝑂 ∧ 𝑥 ∈ 𝐴))) |
11 | 3, 7, 10 | 3bitr4d 310 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (𝑥 ∈ (◡((𝟭‘𝑂)‘𝐴) “ {1}) ↔ 𝑥 ∈ 𝐴)) |
12 | 11 | eqrdv 2723 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (◡((𝟭‘𝑂)‘𝐴) “ {1}) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3946 {csn 4632 {cpr 4634 ◡ccnv 5680 “ cima 5684 Fn wfn 6548 ⟶wf 6549 ‘cfv 6553 0cc0 11154 1c1 11155 𝟭cind 33799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-i2m1 11222 ax-1ne0 11223 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5579 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7426 df-ind 33800 |
This theorem is referenced by: indf1ofs 33815 eulerpartlemgf 34169 |
Copyright terms: Public domain | W3C validator |