![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > indpi1 | Structured version Visualization version GIF version |
Description: Preimage of the singleton {1} by the indicator function. See i1f1lem 25430. (Contributed by Thierry Arnoux, 21-Aug-2017.) |
Ref | Expression |
---|---|
indpi1 | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (◡((𝟭‘𝑂)‘𝐴) “ {1}) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ind1a 33303 | . . . . 5 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑥 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) = 1 ↔ 𝑥 ∈ 𝐴)) | |
2 | 1 | 3expia 1121 | . . . 4 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (𝑥 ∈ 𝑂 → ((((𝟭‘𝑂)‘𝐴)‘𝑥) = 1 ↔ 𝑥 ∈ 𝐴))) |
3 | 2 | pm5.32d 577 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝑥 ∈ 𝑂 ∧ (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1) ↔ (𝑥 ∈ 𝑂 ∧ 𝑥 ∈ 𝐴))) |
4 | indf 33299 | . . . 4 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) | |
5 | ffn 6717 | . . . 4 ⊢ (((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1} → ((𝟭‘𝑂)‘𝐴) Fn 𝑂) | |
6 | fniniseg 7061 | . . . 4 ⊢ (((𝟭‘𝑂)‘𝐴) Fn 𝑂 → (𝑥 ∈ (◡((𝟭‘𝑂)‘𝐴) “ {1}) ↔ (𝑥 ∈ 𝑂 ∧ (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1))) | |
7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (𝑥 ∈ (◡((𝟭‘𝑂)‘𝐴) “ {1}) ↔ (𝑥 ∈ 𝑂 ∧ (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1))) |
8 | ssel 3975 | . . . . 5 ⊢ (𝐴 ⊆ 𝑂 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑂)) | |
9 | 8 | pm4.71rd 563 | . . . 4 ⊢ (𝐴 ⊆ 𝑂 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝑂 ∧ 𝑥 ∈ 𝐴))) |
10 | 9 | adantl 482 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝑂 ∧ 𝑥 ∈ 𝐴))) |
11 | 3, 7, 10 | 3bitr4d 310 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (𝑥 ∈ (◡((𝟭‘𝑂)‘𝐴) “ {1}) ↔ 𝑥 ∈ 𝐴)) |
12 | 11 | eqrdv 2730 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (◡((𝟭‘𝑂)‘𝐴) “ {1}) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⊆ wss 3948 {csn 4628 {cpr 4630 ◡ccnv 5675 “ cima 5679 Fn wfn 6538 ⟶wf 6539 ‘cfv 6543 0cc0 11112 1c1 11113 𝟭cind 33294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-i2m1 11180 ax-1ne0 11181 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-ind 33295 |
This theorem is referenced by: indf1ofs 33310 eulerpartlemgf 33664 |
Copyright terms: Public domain | W3C validator |