Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indpi1 Structured version   Visualization version   GIF version

Theorem indpi1 33984
Description: Preimage of the singleton {1} by the indicator function. See i1f1lem 25743. (Contributed by Thierry Arnoux, 21-Aug-2017.)
Assertion
Ref Expression
indpi1 ((𝑂𝑉𝐴𝑂) → (((𝟭‘𝑂)‘𝐴) “ {1}) = 𝐴)

Proof of Theorem indpi1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ind1a 33983 . . . . 5 ((𝑂𝑉𝐴𝑂𝑥𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) = 1 ↔ 𝑥𝐴))
213expia 1121 . . . 4 ((𝑂𝑉𝐴𝑂) → (𝑥𝑂 → ((((𝟭‘𝑂)‘𝐴)‘𝑥) = 1 ↔ 𝑥𝐴)))
32pm5.32d 576 . . 3 ((𝑂𝑉𝐴𝑂) → ((𝑥𝑂 ∧ (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1) ↔ (𝑥𝑂𝑥𝐴)))
4 indf 33979 . . . 4 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1})
5 ffn 6747 . . . 4 (((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1} → ((𝟭‘𝑂)‘𝐴) Fn 𝑂)
6 fniniseg 7093 . . . 4 (((𝟭‘𝑂)‘𝐴) Fn 𝑂 → (𝑥 ∈ (((𝟭‘𝑂)‘𝐴) “ {1}) ↔ (𝑥𝑂 ∧ (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1)))
74, 5, 63syl 18 . . 3 ((𝑂𝑉𝐴𝑂) → (𝑥 ∈ (((𝟭‘𝑂)‘𝐴) “ {1}) ↔ (𝑥𝑂 ∧ (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1)))
8 ssel 4002 . . . . 5 (𝐴𝑂 → (𝑥𝐴𝑥𝑂))
98pm4.71rd 562 . . . 4 (𝐴𝑂 → (𝑥𝐴 ↔ (𝑥𝑂𝑥𝐴)))
109adantl 481 . . 3 ((𝑂𝑉𝐴𝑂) → (𝑥𝐴 ↔ (𝑥𝑂𝑥𝐴)))
113, 7, 103bitr4d 311 . 2 ((𝑂𝑉𝐴𝑂) → (𝑥 ∈ (((𝟭‘𝑂)‘𝐴) “ {1}) ↔ 𝑥𝐴))
1211eqrdv 2738 1 ((𝑂𝑉𝐴𝑂) → (((𝟭‘𝑂)‘𝐴) “ {1}) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wss 3976  {csn 4648  {cpr 4650  ccnv 5699  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  0cc0 11184  1c1 11185  𝟭cind 33974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-i2m1 11252  ax-1ne0 11253  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-ind 33975
This theorem is referenced by:  indf1ofs  33990  eulerpartlemgf  34344
  Copyright terms: Public domain W3C validator