| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indpi1 | Structured version Visualization version GIF version | ||
| Description: Preimage of the singleton {1} by the indicator function. See i1f1lem 25597. (Contributed by Thierry Arnoux, 21-Aug-2017.) |
| Ref | Expression |
|---|---|
| indpi1 | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (◡((𝟭‘𝑂)‘𝐴) “ {1}) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ind1a 32789 | . . . . 5 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑥 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) = 1 ↔ 𝑥 ∈ 𝐴)) | |
| 2 | 1 | 3expia 1121 | . . . 4 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (𝑥 ∈ 𝑂 → ((((𝟭‘𝑂)‘𝐴)‘𝑥) = 1 ↔ 𝑥 ∈ 𝐴))) |
| 3 | 2 | pm5.32d 577 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝑥 ∈ 𝑂 ∧ (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1) ↔ (𝑥 ∈ 𝑂 ∧ 𝑥 ∈ 𝐴))) |
| 4 | indf 32785 | . . . 4 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) | |
| 5 | ffn 6691 | . . . 4 ⊢ (((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1} → ((𝟭‘𝑂)‘𝐴) Fn 𝑂) | |
| 6 | fniniseg 7035 | . . . 4 ⊢ (((𝟭‘𝑂)‘𝐴) Fn 𝑂 → (𝑥 ∈ (◡((𝟭‘𝑂)‘𝐴) “ {1}) ↔ (𝑥 ∈ 𝑂 ∧ (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1))) | |
| 7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (𝑥 ∈ (◡((𝟭‘𝑂)‘𝐴) “ {1}) ↔ (𝑥 ∈ 𝑂 ∧ (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1))) |
| 8 | ssel 3943 | . . . . 5 ⊢ (𝐴 ⊆ 𝑂 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑂)) | |
| 9 | 8 | pm4.71rd 562 | . . . 4 ⊢ (𝐴 ⊆ 𝑂 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝑂 ∧ 𝑥 ∈ 𝐴))) |
| 10 | 9 | adantl 481 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝑂 ∧ 𝑥 ∈ 𝐴))) |
| 11 | 3, 7, 10 | 3bitr4d 311 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (𝑥 ∈ (◡((𝟭‘𝑂)‘𝐴) “ {1}) ↔ 𝑥 ∈ 𝐴)) |
| 12 | 11 | eqrdv 2728 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (◡((𝟭‘𝑂)‘𝐴) “ {1}) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 {csn 4592 {cpr 4594 ◡ccnv 5640 “ cima 5644 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 0cc0 11075 1c1 11076 𝟭cind 32780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-i2m1 11143 ax-1ne0 11144 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-ind 32781 |
| This theorem is referenced by: indf1ofs 32796 indsupp 32797 eulerpartlemgf 34377 |
| Copyright terms: Public domain | W3C validator |