MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdglim2 Structured version   Visualization version   GIF version

Theorem rdglim2 8471
Description: The value of the recursive definition generator at a limit ordinal, in terms of the union of all smaller values. (Contributed by NM, 23-Apr-1995.)
Assertion
Ref Expression
rdglim2 ((𝐵𝐶 ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = (rec(𝐹, 𝐴)‘𝑥)})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem rdglim2
StepHypRef Expression
1 rdglim 8465 . 2 ((𝐵𝐶 ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = (rec(𝐹, 𝐴) “ 𝐵))
2 dfima3 6083 . . . . 5 (rec(𝐹, 𝐴) “ 𝐵) = {𝑦 ∣ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ rec(𝐹, 𝐴))}
3 df-rex 3069 . . . . . . 7 (∃𝑥𝐵 𝑦 = (rec(𝐹, 𝐴)‘𝑥) ↔ ∃𝑥(𝑥𝐵𝑦 = (rec(𝐹, 𝐴)‘𝑥)))
4 limord 6446 . . . . . . . . . . 11 (Lim 𝐵 → Ord 𝐵)
5 ordelord 6408 . . . . . . . . . . . . 13 ((Ord 𝐵𝑥𝐵) → Ord 𝑥)
65ex 412 . . . . . . . . . . . 12 (Ord 𝐵 → (𝑥𝐵 → Ord 𝑥))
7 vex 3482 . . . . . . . . . . . . 13 𝑥 ∈ V
87elon 6395 . . . . . . . . . . . 12 (𝑥 ∈ On ↔ Ord 𝑥)
96, 8imbitrrdi 252 . . . . . . . . . . 11 (Ord 𝐵 → (𝑥𝐵𝑥 ∈ On))
104, 9syl 17 . . . . . . . . . 10 (Lim 𝐵 → (𝑥𝐵𝑥 ∈ On))
11 eqcom 2742 . . . . . . . . . . 11 (𝑦 = (rec(𝐹, 𝐴)‘𝑥) ↔ (rec(𝐹, 𝐴)‘𝑥) = 𝑦)
12 rdgfnon 8457 . . . . . . . . . . . 12 rec(𝐹, 𝐴) Fn On
13 fnopfvb 6961 . . . . . . . . . . . 12 ((rec(𝐹, 𝐴) Fn On ∧ 𝑥 ∈ On) → ((rec(𝐹, 𝐴)‘𝑥) = 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ rec(𝐹, 𝐴)))
1412, 13mpan 690 . . . . . . . . . . 11 (𝑥 ∈ On → ((rec(𝐹, 𝐴)‘𝑥) = 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ rec(𝐹, 𝐴)))
1511, 14bitrid 283 . . . . . . . . . 10 (𝑥 ∈ On → (𝑦 = (rec(𝐹, 𝐴)‘𝑥) ↔ ⟨𝑥, 𝑦⟩ ∈ rec(𝐹, 𝐴)))
1610, 15syl6 35 . . . . . . . . 9 (Lim 𝐵 → (𝑥𝐵 → (𝑦 = (rec(𝐹, 𝐴)‘𝑥) ↔ ⟨𝑥, 𝑦⟩ ∈ rec(𝐹, 𝐴))))
1716pm5.32d 577 . . . . . . . 8 (Lim 𝐵 → ((𝑥𝐵𝑦 = (rec(𝐹, 𝐴)‘𝑥)) ↔ (𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ rec(𝐹, 𝐴))))
1817exbidv 1919 . . . . . . 7 (Lim 𝐵 → (∃𝑥(𝑥𝐵𝑦 = (rec(𝐹, 𝐴)‘𝑥)) ↔ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ rec(𝐹, 𝐴))))
193, 18bitr2id 284 . . . . . 6 (Lim 𝐵 → (∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ rec(𝐹, 𝐴)) ↔ ∃𝑥𝐵 𝑦 = (rec(𝐹, 𝐴)‘𝑥)))
2019abbidv 2806 . . . . 5 (Lim 𝐵 → {𝑦 ∣ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ rec(𝐹, 𝐴))} = {𝑦 ∣ ∃𝑥𝐵 𝑦 = (rec(𝐹, 𝐴)‘𝑥)})
212, 20eqtrid 2787 . . . 4 (Lim 𝐵 → (rec(𝐹, 𝐴) “ 𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = (rec(𝐹, 𝐴)‘𝑥)})
2221unieqd 4925 . . 3 (Lim 𝐵 (rec(𝐹, 𝐴) “ 𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = (rec(𝐹, 𝐴)‘𝑥)})
2322adantl 481 . 2 ((𝐵𝐶 ∧ Lim 𝐵) → (rec(𝐹, 𝐴) “ 𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = (rec(𝐹, 𝐴)‘𝑥)})
241, 23eqtrd 2775 1 ((𝐵𝐶 ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = (rec(𝐹, 𝐴)‘𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  {cab 2712  wrex 3068  cop 4637   cuni 4912  cima 5692  Ord word 6385  Oncon0 6386  Lim wlim 6387   Fn wfn 6558  cfv 6563  reccrdg 8448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449
This theorem is referenced by:  rdglim2a  8472
  Copyright terms: Public domain W3C validator