MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdglim2 Structured version   Visualization version   GIF version

Theorem rdglim2 8062
Description: The value of the recursive definition generator at a limit ordinal, in terms of the union of all smaller values. (Contributed by NM, 23-Apr-1995.)
Assertion
Ref Expression
rdglim2 ((𝐵𝐶 ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = (rec(𝐹, 𝐴)‘𝑥)})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem rdglim2
StepHypRef Expression
1 rdglim 8056 . 2 ((𝐵𝐶 ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = (rec(𝐹, 𝐴) “ 𝐵))
2 dfima3 5929 . . . . 5 (rec(𝐹, 𝐴) “ 𝐵) = {𝑦 ∣ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ rec(𝐹, 𝐴))}
3 df-rex 3148 . . . . . . 7 (∃𝑥𝐵 𝑦 = (rec(𝐹, 𝐴)‘𝑥) ↔ ∃𝑥(𝑥𝐵𝑦 = (rec(𝐹, 𝐴)‘𝑥)))
4 limord 6247 . . . . . . . . . . 11 (Lim 𝐵 → Ord 𝐵)
5 ordelord 6210 . . . . . . . . . . . . 13 ((Ord 𝐵𝑥𝐵) → Ord 𝑥)
65ex 413 . . . . . . . . . . . 12 (Ord 𝐵 → (𝑥𝐵 → Ord 𝑥))
7 vex 3502 . . . . . . . . . . . . 13 𝑥 ∈ V
87elon 6197 . . . . . . . . . . . 12 (𝑥 ∈ On ↔ Ord 𝑥)
96, 8syl6ibr 253 . . . . . . . . . . 11 (Ord 𝐵 → (𝑥𝐵𝑥 ∈ On))
104, 9syl 17 . . . . . . . . . 10 (Lim 𝐵 → (𝑥𝐵𝑥 ∈ On))
11 eqcom 2831 . . . . . . . . . . 11 (𝑦 = (rec(𝐹, 𝐴)‘𝑥) ↔ (rec(𝐹, 𝐴)‘𝑥) = 𝑦)
12 rdgfnon 8048 . . . . . . . . . . . 12 rec(𝐹, 𝐴) Fn On
13 fnopfvb 6715 . . . . . . . . . . . 12 ((rec(𝐹, 𝐴) Fn On ∧ 𝑥 ∈ On) → ((rec(𝐹, 𝐴)‘𝑥) = 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ rec(𝐹, 𝐴)))
1412, 13mpan 686 . . . . . . . . . . 11 (𝑥 ∈ On → ((rec(𝐹, 𝐴)‘𝑥) = 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ rec(𝐹, 𝐴)))
1511, 14syl5bb 284 . . . . . . . . . 10 (𝑥 ∈ On → (𝑦 = (rec(𝐹, 𝐴)‘𝑥) ↔ ⟨𝑥, 𝑦⟩ ∈ rec(𝐹, 𝐴)))
1610, 15syl6 35 . . . . . . . . 9 (Lim 𝐵 → (𝑥𝐵 → (𝑦 = (rec(𝐹, 𝐴)‘𝑥) ↔ ⟨𝑥, 𝑦⟩ ∈ rec(𝐹, 𝐴))))
1716pm5.32d 577 . . . . . . . 8 (Lim 𝐵 → ((𝑥𝐵𝑦 = (rec(𝐹, 𝐴)‘𝑥)) ↔ (𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ rec(𝐹, 𝐴))))
1817exbidv 1915 . . . . . . 7 (Lim 𝐵 → (∃𝑥(𝑥𝐵𝑦 = (rec(𝐹, 𝐴)‘𝑥)) ↔ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ rec(𝐹, 𝐴))))
193, 18syl5rbb 285 . . . . . 6 (Lim 𝐵 → (∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ rec(𝐹, 𝐴)) ↔ ∃𝑥𝐵 𝑦 = (rec(𝐹, 𝐴)‘𝑥)))
2019abbidv 2889 . . . . 5 (Lim 𝐵 → {𝑦 ∣ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ rec(𝐹, 𝐴))} = {𝑦 ∣ ∃𝑥𝐵 𝑦 = (rec(𝐹, 𝐴)‘𝑥)})
212, 20syl5eq 2872 . . . 4 (Lim 𝐵 → (rec(𝐹, 𝐴) “ 𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = (rec(𝐹, 𝐴)‘𝑥)})
2221unieqd 4846 . . 3 (Lim 𝐵 (rec(𝐹, 𝐴) “ 𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = (rec(𝐹, 𝐴)‘𝑥)})
2322adantl 482 . 2 ((𝐵𝐶 ∧ Lim 𝐵) → (rec(𝐹, 𝐴) “ 𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = (rec(𝐹, 𝐴)‘𝑥)})
241, 23eqtrd 2860 1 ((𝐵𝐶 ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = (rec(𝐹, 𝐴)‘𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wex 1773  wcel 2106  {cab 2802  wrex 3143  cop 4569   cuni 4836  cima 5556  Ord word 6187  Oncon0 6188  Lim wlim 6189   Fn wfn 6346  cfv 6351  reccrdg 8039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-wrecs 7941  df-recs 8002  df-rdg 8040
This theorem is referenced by:  rdglim2a  8063
  Copyright terms: Public domain W3C validator