MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwnz Structured version   Visualization version   GIF version

Theorem btwnz 12087
Description: Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.)
Assertion
Ref Expression
btwnz (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴

Proof of Theorem btwnz
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 renegcl 10952 . . . 4 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2 arch 11897 . . . 4 (-𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ -𝐴 < 𝑧)
31, 2syl 17 . . 3 (𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ -𝐴 < 𝑧)
4 nnre 11648 . . . . . . . 8 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
5 ltnegcon1 11144 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝐴 < 𝑧 ↔ -𝑧 < 𝐴))
65ex 415 . . . . . . . 8 (𝐴 ∈ ℝ → (𝑧 ∈ ℝ → (-𝐴 < 𝑧 ↔ -𝑧 < 𝐴)))
74, 6syl5 34 . . . . . . 7 (𝐴 ∈ ℝ → (𝑧 ∈ ℕ → (-𝐴 < 𝑧 ↔ -𝑧 < 𝐴)))
87pm5.32d 579 . . . . . 6 (𝐴 ∈ ℝ → ((𝑧 ∈ ℕ ∧ -𝐴 < 𝑧) ↔ (𝑧 ∈ ℕ ∧ -𝑧 < 𝐴)))
9 nnnegz 11987 . . . . . . 7 (𝑧 ∈ ℕ → -𝑧 ∈ ℤ)
10 breq1 5072 . . . . . . . 8 (𝑥 = -𝑧 → (𝑥 < 𝐴 ↔ -𝑧 < 𝐴))
1110rspcev 3626 . . . . . . 7 ((-𝑧 ∈ ℤ ∧ -𝑧 < 𝐴) → ∃𝑥 ∈ ℤ 𝑥 < 𝐴)
129, 11sylan 582 . . . . . 6 ((𝑧 ∈ ℕ ∧ -𝑧 < 𝐴) → ∃𝑥 ∈ ℤ 𝑥 < 𝐴)
138, 12syl6bi 255 . . . . 5 (𝐴 ∈ ℝ → ((𝑧 ∈ ℕ ∧ -𝐴 < 𝑧) → ∃𝑥 ∈ ℤ 𝑥 < 𝐴))
1413expd 418 . . . 4 (𝐴 ∈ ℝ → (𝑧 ∈ ℕ → (-𝐴 < 𝑧 → ∃𝑥 ∈ ℤ 𝑥 < 𝐴)))
1514rexlimdv 3286 . . 3 (𝐴 ∈ ℝ → (∃𝑧 ∈ ℕ -𝐴 < 𝑧 → ∃𝑥 ∈ ℤ 𝑥 < 𝐴))
163, 15mpd 15 . 2 (𝐴 ∈ ℝ → ∃𝑥 ∈ ℤ 𝑥 < 𝐴)
17 arch 11897 . . 3 (𝐴 ∈ ℝ → ∃𝑦 ∈ ℕ 𝐴 < 𝑦)
18 nnz 12007 . . . . 5 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
1918anim1i 616 . . . 4 ((𝑦 ∈ ℕ ∧ 𝐴 < 𝑦) → (𝑦 ∈ ℤ ∧ 𝐴 < 𝑦))
2019reximi2 3247 . . 3 (∃𝑦 ∈ ℕ 𝐴 < 𝑦 → ∃𝑦 ∈ ℤ 𝐴 < 𝑦)
2117, 20syl 17 . 2 (𝐴 ∈ ℝ → ∃𝑦 ∈ ℤ 𝐴 < 𝑦)
2216, 21jca 514 1 (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2113  wrex 3142   class class class wbr 5069  cr 10539   < clt 10678  -cneg 10874  cn 11641  cz 11984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-z 11985
This theorem is referenced by:  lbzbi  12339  rpnnen1lem2  12379  rpnnen1lem1  12380  rpnnen1lem3  12381  rpnnen1lem5  12383  fourierdlem64  42462
  Copyright terms: Public domain W3C validator