MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwnz Structured version   Visualization version   GIF version

Theorem btwnz 12721
Description: Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.)
Assertion
Ref Expression
btwnz (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴

Proof of Theorem btwnz
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 renegcl 11572 . . . 4 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2 arch 12523 . . . 4 (-𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ -𝐴 < 𝑧)
31, 2syl 17 . . 3 (𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ -𝐴 < 𝑧)
4 nnre 12273 . . . . . . . 8 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
5 ltnegcon1 11764 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝐴 < 𝑧 ↔ -𝑧 < 𝐴))
65ex 412 . . . . . . . 8 (𝐴 ∈ ℝ → (𝑧 ∈ ℝ → (-𝐴 < 𝑧 ↔ -𝑧 < 𝐴)))
74, 6syl5 34 . . . . . . 7 (𝐴 ∈ ℝ → (𝑧 ∈ ℕ → (-𝐴 < 𝑧 ↔ -𝑧 < 𝐴)))
87pm5.32d 577 . . . . . 6 (𝐴 ∈ ℝ → ((𝑧 ∈ ℕ ∧ -𝐴 < 𝑧) ↔ (𝑧 ∈ ℕ ∧ -𝑧 < 𝐴)))
9 nnnegz 12616 . . . . . . 7 (𝑧 ∈ ℕ → -𝑧 ∈ ℤ)
10 breq1 5146 . . . . . . . 8 (𝑥 = -𝑧 → (𝑥 < 𝐴 ↔ -𝑧 < 𝐴))
1110rspcev 3622 . . . . . . 7 ((-𝑧 ∈ ℤ ∧ -𝑧 < 𝐴) → ∃𝑥 ∈ ℤ 𝑥 < 𝐴)
129, 11sylan 580 . . . . . 6 ((𝑧 ∈ ℕ ∧ -𝑧 < 𝐴) → ∃𝑥 ∈ ℤ 𝑥 < 𝐴)
138, 12biimtrdi 253 . . . . 5 (𝐴 ∈ ℝ → ((𝑧 ∈ ℕ ∧ -𝐴 < 𝑧) → ∃𝑥 ∈ ℤ 𝑥 < 𝐴))
1413expd 415 . . . 4 (𝐴 ∈ ℝ → (𝑧 ∈ ℕ → (-𝐴 < 𝑧 → ∃𝑥 ∈ ℤ 𝑥 < 𝐴)))
1514rexlimdv 3153 . . 3 (𝐴 ∈ ℝ → (∃𝑧 ∈ ℕ -𝐴 < 𝑧 → ∃𝑥 ∈ ℤ 𝑥 < 𝐴))
163, 15mpd 15 . 2 (𝐴 ∈ ℝ → ∃𝑥 ∈ ℤ 𝑥 < 𝐴)
17 arch 12523 . . 3 (𝐴 ∈ ℝ → ∃𝑦 ∈ ℕ 𝐴 < 𝑦)
18 nnz 12634 . . . . 5 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
1918anim1i 615 . . . 4 ((𝑦 ∈ ℕ ∧ 𝐴 < 𝑦) → (𝑦 ∈ ℤ ∧ 𝐴 < 𝑦))
2019reximi2 3079 . . 3 (∃𝑦 ∈ ℕ 𝐴 < 𝑦 → ∃𝑦 ∈ ℤ 𝐴 < 𝑦)
2117, 20syl 17 . 2 (𝐴 ∈ ℝ → ∃𝑦 ∈ ℤ 𝐴 < 𝑦)
2216, 21jca 511 1 (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wrex 3070   class class class wbr 5143  cr 11154   < clt 11295  -cneg 11493  cn 12266  cz 12613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-z 12614
This theorem is referenced by:  lbzbi  12978  rpnnen1lem2  13019  rpnnen1lem1  13020  rpnnen1lem3  13021  rpnnen1lem5  13023  fourierdlem64  46185
  Copyright terms: Public domain W3C validator