![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > modprminveq | Structured version Visualization version GIF version |
Description: The modular inverse of 𝐴 mod 𝑃 is unique. (Contributed by Alexander van der Vekens, 17-May-2018.) |
Ref | Expression |
---|---|
modprminv.1 | ⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) |
Ref | Expression |
---|---|
modprminveq | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ ((𝐴 · 𝑆) mod 𝑃) = 1) ↔ 𝑆 = 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzelz 13584 | . . . . . . 7 ⊢ (𝑆 ∈ (0...(𝑃 − 1)) → 𝑆 ∈ ℤ) | |
2 | zmulcl 12692 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (𝐴 · 𝑆) ∈ ℤ) | |
3 | 1, 2 | sylan2 592 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑆 ∈ (0...(𝑃 − 1))) → (𝐴 · 𝑆) ∈ ℤ) |
4 | modprm1div 16844 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 · 𝑆) ∈ ℤ) → (((𝐴 · 𝑆) mod 𝑃) = 1 ↔ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) | |
5 | 3, 4 | sylan2 592 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝑆 ∈ (0...(𝑃 − 1)))) → (((𝐴 · 𝑆) mod 𝑃) = 1 ↔ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) |
6 | 5 | expr 456 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑆 ∈ (0...(𝑃 − 1)) → (((𝐴 · 𝑆) mod 𝑃) = 1 ↔ 𝑃 ∥ ((𝐴 · 𝑆) − 1)))) |
7 | 6 | 3adant3 1132 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝑆 ∈ (0...(𝑃 − 1)) → (((𝐴 · 𝑆) mod 𝑃) = 1 ↔ 𝑃 ∥ ((𝐴 · 𝑆) − 1)))) |
8 | 7 | pm5.32d 576 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ ((𝐴 · 𝑆) mod 𝑃) = 1) ↔ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)))) |
9 | modprminv.1 | . . 3 ⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) | |
10 | 9 | prmdiveq 16833 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)) ↔ 𝑆 = 𝑅)) |
11 | 8, 10 | bitrd 279 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ ((𝐴 · 𝑆) mod 𝑃) = 1) ↔ 𝑆 = 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 0cc0 11184 1c1 11185 · cmul 11189 − cmin 11520 2c2 12348 ℤcz 12639 ...cfz 13567 mod cmo 13920 ↑cexp 14112 ∥ cdvds 16302 ℙcprime 16718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-gcd 16541 df-prm 16719 df-phi 16813 |
This theorem is referenced by: reumodprminv 16851 |
Copyright terms: Public domain | W3C validator |