| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfge | Structured version Visualization version GIF version | ||
| Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.) |
| Ref | Expression |
|---|---|
| pnfge | ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnlt 13027 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) | |
| 2 | pnfxr 11166 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 3 | xrlenlt 11177 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) | |
| 4 | 2, 3 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2111 class class class wbr 5089 +∞cpnf 11143 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 |
| This theorem is referenced by: pnfged 13030 xnn0n0n1ge2b 13031 0lepnf 13032 nltpnft 13063 xrre2 13069 xnn0lem1lt 13143 xleadd1a 13152 xlt2add 13159 xsubge0 13160 xlesubadd 13162 xlemul1a 13187 elicore 13298 elico2 13310 iccmax 13323 elxrge0 13357 nfile 14266 hashdom 14286 hashdomi 14287 hashge1 14296 hashss 14316 hashge2el2difr 14388 pcdvdsb 16781 pc2dvds 16791 pcaddlem 16800 xrsdsreclblem 21349 leordtvallem1 23125 lecldbas 23134 isxmet2d 24242 blssec 24350 nmoix 24644 nmoleub 24646 xrtgioo 24722 xrge0tsms 24750 metdstri 24767 nmoleub2lem 25041 ovolf 25410 ovollb2 25417 ovoliun 25433 ovolre 25453 voliunlem3 25480 volsup 25484 icombl 25492 ioombl 25493 ismbfd 25567 itg2seq 25670 dvfsumrlim 25965 dvfsumrlim2 25966 radcnvcl 26353 xrlimcnp 26905 logfacbnd3 27161 log2sumbnd 27482 tgldimor 28480 xrdifh 32763 xrge0tsmsd 33042 unitssxrge0 33913 tpr2rico 33925 lmxrge0 33965 esumle 34071 esumlef 34075 esumpinfval 34086 esumpinfsum 34090 esumcvgsum 34101 ddemeas 34249 sxbrsigalem2 34299 omssubadd 34313 carsgclctunlem3 34333 signsply0 34564 ismblfin 37711 xrgepnfd 45440 supxrgelem 45446 supxrge 45447 infrpge 45460 xrlexaddrp 45461 infleinflem1 45478 infleinf 45480 infxrpnf 45554 ge0xrre 45641 iblsplit 46074 ismbl3 46094 ovolsplit 46096 sge0cl 46489 sge0less 46500 sge0pr 46502 sge0le 46515 sge0split 46517 carageniuncl 46631 ovnsubaddlem1 46678 hspmbl 46737 pimiooltgt 46818 pgrpgt2nabl 48476 |
| Copyright terms: Public domain | W3C validator |