| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfge | Structured version Visualization version GIF version | ||
| Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.) |
| Ref | Expression |
|---|---|
| pnfge | ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnlt 13088 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) | |
| 2 | pnfxr 11228 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 3 | xrlenlt 11239 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) | |
| 4 | 2, 3 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2109 class class class wbr 5107 +∞cpnf 11205 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 |
| This theorem is referenced by: pnfged 13091 xnn0n0n1ge2b 13092 0lepnf 13093 nltpnft 13124 xrre2 13130 xnn0lem1lt 13204 xleadd1a 13213 xlt2add 13220 xsubge0 13221 xlesubadd 13223 xlemul1a 13248 elicore 13359 elico2 13371 iccmax 13384 elxrge0 13418 nfile 14324 hashdom 14344 hashdomi 14345 hashge1 14354 hashss 14374 hashge2el2difr 14446 pcdvdsb 16840 pc2dvds 16850 pcaddlem 16859 xrsdsreclblem 21329 leordtvallem1 23097 lecldbas 23106 isxmet2d 24215 blssec 24323 nmoix 24617 nmoleub 24619 xrtgioo 24695 xrge0tsms 24723 metdstri 24740 nmoleub2lem 25014 ovolf 25383 ovollb2 25390 ovoliun 25406 ovolre 25426 voliunlem3 25453 volsup 25457 icombl 25465 ioombl 25466 ismbfd 25540 itg2seq 25643 dvfsumrlim 25938 dvfsumrlim2 25939 radcnvcl 26326 xrlimcnp 26878 logfacbnd3 27134 log2sumbnd 27455 tgldimor 28429 xrdifh 32703 xrge0tsmsd 33002 unitssxrge0 33890 tpr2rico 33902 lmxrge0 33942 esumle 34048 esumlef 34052 esumpinfval 34063 esumpinfsum 34067 esumcvgsum 34078 ddemeas 34226 sxbrsigalem2 34277 omssubadd 34291 carsgclctunlem3 34311 signsply0 34542 ismblfin 37655 xrgepnfd 45327 supxrgelem 45333 supxrge 45334 infrpge 45347 xrlexaddrp 45348 infleinflem1 45366 infleinf 45368 infxrpnf 45442 ge0xrre 45529 iblsplit 45964 ismbl3 45984 ovolsplit 45986 sge0cl 46379 sge0less 46390 sge0pr 46392 sge0le 46405 sge0split 46407 carageniuncl 46521 ovnsubaddlem1 46568 hspmbl 46627 pimiooltgt 46708 pgrpgt2nabl 48354 |
| Copyright terms: Public domain | W3C validator |