| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfge | Structured version Visualization version GIF version | ||
| Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.) |
| Ref | Expression |
|---|---|
| pnfge | ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnlt 13142 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) | |
| 2 | pnfxr 11287 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 3 | xrlenlt 11298 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) | |
| 4 | 2, 3 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2108 class class class wbr 5119 +∞cpnf 11264 ℝ*cxr 11266 < clt 11267 ≤ cle 11268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 |
| This theorem is referenced by: pnfged 13145 xnn0n0n1ge2b 13146 0lepnf 13147 nltpnft 13178 xrre2 13184 xnn0lem1lt 13258 xleadd1a 13267 xlt2add 13274 xsubge0 13275 xlesubadd 13277 xlemul1a 13302 elicore 13413 elico2 13425 iccmax 13438 elxrge0 13472 nfile 14375 hashdom 14395 hashdomi 14396 hashge1 14405 hashss 14425 hashge2el2difr 14497 pcdvdsb 16887 pc2dvds 16897 pcaddlem 16906 xrsdsreclblem 21378 leordtvallem1 23146 lecldbas 23155 isxmet2d 24264 blssec 24372 nmoix 24666 nmoleub 24668 xrtgioo 24744 xrge0tsms 24772 metdstri 24789 nmoleub2lem 25063 ovolf 25433 ovollb2 25440 ovoliun 25456 ovolre 25476 voliunlem3 25503 volsup 25507 icombl 25515 ioombl 25516 ismbfd 25590 itg2seq 25693 dvfsumrlim 25988 dvfsumrlim2 25989 radcnvcl 26376 xrlimcnp 26928 logfacbnd3 27184 log2sumbnd 27505 tgldimor 28427 xrdifh 32703 xrge0tsmsd 33002 unitssxrge0 33877 tpr2rico 33889 lmxrge0 33929 esumle 34035 esumlef 34039 esumpinfval 34050 esumpinfsum 34054 esumcvgsum 34065 ddemeas 34213 sxbrsigalem2 34264 omssubadd 34278 carsgclctunlem3 34298 signsply0 34529 ismblfin 37631 xrgepnfd 45306 supxrgelem 45312 supxrge 45313 infrpge 45326 xrlexaddrp 45327 infleinflem1 45345 infleinf 45347 infxrpnf 45421 ge0xrre 45508 iblsplit 45943 ismbl3 45963 ovolsplit 45965 sge0cl 46358 sge0less 46369 sge0pr 46371 sge0le 46384 sge0split 46386 carageniuncl 46500 ovnsubaddlem1 46547 hspmbl 46606 pimiooltgt 46687 pgrpgt2nabl 48289 |
| Copyright terms: Public domain | W3C validator |