Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pnfge | Structured version Visualization version GIF version |
Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pnfge | ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnlt 12846 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) | |
2 | pnfxr 11013 | . . 3 ⊢ +∞ ∈ ℝ* | |
3 | xrlenlt 11024 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) | |
4 | 2, 3 | mpan2 687 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) |
5 | 1, 4 | mpbird 256 | 1 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∈ wcel 2109 class class class wbr 5078 +∞cpnf 10990 ℝ*cxr 10992 < clt 10993 ≤ cle 10994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-xp 5594 df-cnv 5596 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 |
This theorem is referenced by: xnn0n0n1ge2b 12849 0lepnf 12850 nltpnft 12880 xrre2 12886 xnn0lem1lt 12960 xleadd1a 12969 xlt2add 12976 xsubge0 12977 xlesubadd 12979 xlemul1a 13004 elicore 13113 elico2 13125 iccmax 13137 elxrge0 13171 nfile 14055 hashdom 14075 hashdomi 14076 hashge1 14085 hashss 14105 hashge2el2difr 14176 pcdvdsb 16551 pc2dvds 16561 pcaddlem 16570 xrsdsreclblem 20625 leordtvallem1 22342 lecldbas 22351 isxmet2d 23461 blssec 23569 nmoix 23874 nmoleub 23876 xrtgioo 23950 xrge0tsms 23978 metdstri 23995 nmoleub2lem 24258 ovolf 24627 ovollb2 24634 ovoliun 24650 ovolre 24670 voliunlem3 24697 volsup 24701 icombl 24709 ioombl 24710 ismbfd 24784 itg2seq 24888 dvfsumrlim 25176 dvfsumrlim2 25177 radcnvcl 25557 xrlimcnp 26099 logfacbnd3 26352 log2sumbnd 26673 tgldimor 26844 xrdifh 31080 xrge0tsmsd 31296 unitssxrge0 31829 tpr2rico 31841 lmxrge0 31881 esumle 32005 esumlef 32009 esumpinfval 32020 esumpinfsum 32024 esumcvgsum 32035 ddemeas 32183 sxbrsigalem2 32232 omssubadd 32246 carsgclctunlem3 32266 signsply0 32509 ismblfin 35797 xrgepnfd 42824 supxrgelem 42830 supxrge 42831 infrpge 42844 xrlexaddrp 42845 infleinflem1 42863 infleinf 42865 infxrpnf 42940 pnfged 42968 ge0xrre 43023 iblsplit 43461 ismbl3 43481 ovolsplit 43483 sge0cl 43873 sge0less 43884 sge0pr 43886 sge0le 43899 sge0split 43901 carageniuncl 44015 ovnsubaddlem1 44062 hspmbl 44121 pimiooltgt 44199 pgrpgt2nabl 45654 |
Copyright terms: Public domain | W3C validator |