| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfge | Structured version Visualization version GIF version | ||
| Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.) |
| Ref | Expression |
|---|---|
| pnfge | ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnlt 13095 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) | |
| 2 | pnfxr 11235 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 3 | xrlenlt 11246 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) | |
| 4 | 2, 3 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2109 class class class wbr 5110 +∞cpnf 11212 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 |
| This theorem is referenced by: pnfged 13098 xnn0n0n1ge2b 13099 0lepnf 13100 nltpnft 13131 xrre2 13137 xnn0lem1lt 13211 xleadd1a 13220 xlt2add 13227 xsubge0 13228 xlesubadd 13230 xlemul1a 13255 elicore 13366 elico2 13378 iccmax 13391 elxrge0 13425 nfile 14331 hashdom 14351 hashdomi 14352 hashge1 14361 hashss 14381 hashge2el2difr 14453 pcdvdsb 16847 pc2dvds 16857 pcaddlem 16866 xrsdsreclblem 21336 leordtvallem1 23104 lecldbas 23113 isxmet2d 24222 blssec 24330 nmoix 24624 nmoleub 24626 xrtgioo 24702 xrge0tsms 24730 metdstri 24747 nmoleub2lem 25021 ovolf 25390 ovollb2 25397 ovoliun 25413 ovolre 25433 voliunlem3 25460 volsup 25464 icombl 25472 ioombl 25473 ismbfd 25547 itg2seq 25650 dvfsumrlim 25945 dvfsumrlim2 25946 radcnvcl 26333 xrlimcnp 26885 logfacbnd3 27141 log2sumbnd 27462 tgldimor 28436 xrdifh 32710 xrge0tsmsd 33009 unitssxrge0 33897 tpr2rico 33909 lmxrge0 33949 esumle 34055 esumlef 34059 esumpinfval 34070 esumpinfsum 34074 esumcvgsum 34085 ddemeas 34233 sxbrsigalem2 34284 omssubadd 34298 carsgclctunlem3 34318 signsply0 34549 ismblfin 37662 xrgepnfd 45334 supxrgelem 45340 supxrge 45341 infrpge 45354 xrlexaddrp 45355 infleinflem1 45373 infleinf 45375 infxrpnf 45449 ge0xrre 45536 iblsplit 45971 ismbl3 45991 ovolsplit 45993 sge0cl 46386 sge0less 46397 sge0pr 46399 sge0le 46412 sge0split 46414 carageniuncl 46528 ovnsubaddlem1 46575 hspmbl 46634 pimiooltgt 46715 pgrpgt2nabl 48358 |
| Copyright terms: Public domain | W3C validator |