Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pnfge | Structured version Visualization version GIF version |
Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pnfge | ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnlt 12969 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) | |
2 | pnfxr 11134 | . . 3 ⊢ +∞ ∈ ℝ* | |
3 | xrlenlt 11145 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) | |
4 | 2, 3 | mpan2 689 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) |
5 | 1, 4 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∈ wcel 2106 class class class wbr 5096 +∞cpnf 11111 ℝ*cxr 11113 < clt 11114 ≤ cle 11115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-xp 5630 df-cnv 5632 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 |
This theorem is referenced by: xnn0n0n1ge2b 12972 0lepnf 12973 nltpnft 13003 xrre2 13009 xnn0lem1lt 13083 xleadd1a 13092 xlt2add 13099 xsubge0 13100 xlesubadd 13102 xlemul1a 13127 elicore 13236 elico2 13248 iccmax 13260 elxrge0 13294 nfile 14178 hashdom 14198 hashdomi 14199 hashge1 14208 hashss 14228 hashge2el2difr 14299 pcdvdsb 16667 pc2dvds 16677 pcaddlem 16686 xrsdsreclblem 20749 leordtvallem1 22466 lecldbas 22475 isxmet2d 23585 blssec 23693 nmoix 23998 nmoleub 24000 xrtgioo 24074 xrge0tsms 24102 metdstri 24119 nmoleub2lem 24382 ovolf 24751 ovollb2 24758 ovoliun 24774 ovolre 24794 voliunlem3 24821 volsup 24825 icombl 24833 ioombl 24834 ismbfd 24908 itg2seq 25012 dvfsumrlim 25300 dvfsumrlim2 25301 radcnvcl 25681 xrlimcnp 26223 logfacbnd3 26476 log2sumbnd 26797 tgldimor 27151 xrdifh 31386 xrge0tsmsd 31602 unitssxrge0 32146 tpr2rico 32158 lmxrge0 32198 esumle 32322 esumlef 32326 esumpinfval 32337 esumpinfsum 32341 esumcvgsum 32352 ddemeas 32500 sxbrsigalem2 32551 omssubadd 32565 carsgclctunlem3 32585 signsply0 32828 ismblfin 35974 xrgepnfd 43257 supxrgelem 43263 supxrge 43264 infrpge 43277 xrlexaddrp 43278 infleinflem1 43296 infleinf 43298 infxrpnf 43373 pnfged 43401 ge0xrre 43457 iblsplit 43895 ismbl3 43915 ovolsplit 43917 sge0cl 44308 sge0less 44319 sge0pr 44321 sge0le 44334 sge0split 44336 carageniuncl 44450 ovnsubaddlem1 44497 hspmbl 44556 pimiooltgt 44637 pgrpgt2nabl 46120 |
Copyright terms: Public domain | W3C validator |