![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnfge | Structured version Visualization version GIF version |
Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pnfge | ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnlt 13191 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) | |
2 | pnfxr 11344 | . . 3 ⊢ +∞ ∈ ℝ* | |
3 | xrlenlt 11355 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) | |
4 | 2, 3 | mpan2 690 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) |
5 | 1, 4 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2108 class class class wbr 5166 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 |
This theorem is referenced by: xnn0n0n1ge2b 13194 0lepnf 13195 nltpnft 13226 xrre2 13232 xnn0lem1lt 13306 xleadd1a 13315 xlt2add 13322 xsubge0 13323 xlesubadd 13325 xlemul1a 13350 elicore 13459 elico2 13471 iccmax 13483 elxrge0 13517 nfile 14408 hashdom 14428 hashdomi 14429 hashge1 14438 hashss 14458 hashge2el2difr 14530 pcdvdsb 16916 pc2dvds 16926 pcaddlem 16935 xrsdsreclblem 21453 leordtvallem1 23239 lecldbas 23248 isxmet2d 24358 blssec 24466 nmoix 24771 nmoleub 24773 xrtgioo 24847 xrge0tsms 24875 metdstri 24892 nmoleub2lem 25166 ovolf 25536 ovollb2 25543 ovoliun 25559 ovolre 25579 voliunlem3 25606 volsup 25610 icombl 25618 ioombl 25619 ismbfd 25693 itg2seq 25797 dvfsumrlim 26092 dvfsumrlim2 26093 radcnvcl 26478 xrlimcnp 27029 logfacbnd3 27285 log2sumbnd 27606 tgldimor 28528 xrdifh 32785 xrge0tsmsd 33041 unitssxrge0 33846 tpr2rico 33858 lmxrge0 33898 esumle 34022 esumlef 34026 esumpinfval 34037 esumpinfsum 34041 esumcvgsum 34052 ddemeas 34200 sxbrsigalem2 34251 omssubadd 34265 carsgclctunlem3 34285 signsply0 34528 ismblfin 37621 xrgepnfd 45246 supxrgelem 45252 supxrge 45253 infrpge 45266 xrlexaddrp 45267 infleinflem1 45285 infleinf 45287 infxrpnf 45361 pnfged 45389 ge0xrre 45449 iblsplit 45887 ismbl3 45907 ovolsplit 45909 sge0cl 46302 sge0less 46313 sge0pr 46315 sge0le 46328 sge0split 46330 carageniuncl 46444 ovnsubaddlem1 46491 hspmbl 46550 pimiooltgt 46631 pgrpgt2nabl 48091 |
Copyright terms: Public domain | W3C validator |