| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfge | Structured version Visualization version GIF version | ||
| Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.) |
| Ref | Expression |
|---|---|
| pnfge | ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnlt 13064 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) | |
| 2 | pnfxr 11204 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 3 | xrlenlt 11215 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) | |
| 4 | 2, 3 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2109 class class class wbr 5102 +∞cpnf 11181 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 |
| This theorem is referenced by: pnfged 13067 xnn0n0n1ge2b 13068 0lepnf 13069 nltpnft 13100 xrre2 13106 xnn0lem1lt 13180 xleadd1a 13189 xlt2add 13196 xsubge0 13197 xlesubadd 13199 xlemul1a 13224 elicore 13335 elico2 13347 iccmax 13360 elxrge0 13394 nfile 14300 hashdom 14320 hashdomi 14321 hashge1 14330 hashss 14350 hashge2el2difr 14422 pcdvdsb 16816 pc2dvds 16826 pcaddlem 16835 xrsdsreclblem 21305 leordtvallem1 23073 lecldbas 23082 isxmet2d 24191 blssec 24299 nmoix 24593 nmoleub 24595 xrtgioo 24671 xrge0tsms 24699 metdstri 24716 nmoleub2lem 24990 ovolf 25359 ovollb2 25366 ovoliun 25382 ovolre 25402 voliunlem3 25429 volsup 25433 icombl 25441 ioombl 25442 ismbfd 25516 itg2seq 25619 dvfsumrlim 25914 dvfsumrlim2 25915 radcnvcl 26302 xrlimcnp 26854 logfacbnd3 27110 log2sumbnd 27431 tgldimor 28405 xrdifh 32676 xrge0tsmsd 32975 unitssxrge0 33863 tpr2rico 33875 lmxrge0 33915 esumle 34021 esumlef 34025 esumpinfval 34036 esumpinfsum 34040 esumcvgsum 34051 ddemeas 34199 sxbrsigalem2 34250 omssubadd 34264 carsgclctunlem3 34284 signsply0 34515 ismblfin 37628 xrgepnfd 45300 supxrgelem 45306 supxrge 45307 infrpge 45320 xrlexaddrp 45321 infleinflem1 45339 infleinf 45341 infxrpnf 45415 ge0xrre 45502 iblsplit 45937 ismbl3 45957 ovolsplit 45959 sge0cl 46352 sge0less 46363 sge0pr 46365 sge0le 46378 sge0split 46380 carageniuncl 46494 ovnsubaddlem1 46541 hspmbl 46600 pimiooltgt 46681 pgrpgt2nabl 48327 |
| Copyright terms: Public domain | W3C validator |