| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfge | Structured version Visualization version GIF version | ||
| Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.) |
| Ref | Expression |
|---|---|
| pnfge | ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnlt 13064 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) | |
| 2 | pnfxr 11204 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 3 | xrlenlt 11215 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) | |
| 4 | 2, 3 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2109 class class class wbr 5102 +∞cpnf 11181 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 |
| This theorem is referenced by: pnfged 13067 xnn0n0n1ge2b 13068 0lepnf 13069 nltpnft 13100 xrre2 13106 xnn0lem1lt 13180 xleadd1a 13189 xlt2add 13196 xsubge0 13197 xlesubadd 13199 xlemul1a 13224 elicore 13335 elico2 13347 iccmax 13360 elxrge0 13394 nfile 14300 hashdom 14320 hashdomi 14321 hashge1 14330 hashss 14350 hashge2el2difr 14422 pcdvdsb 16816 pc2dvds 16826 pcaddlem 16835 xrsdsreclblem 21354 leordtvallem1 23130 lecldbas 23139 isxmet2d 24248 blssec 24356 nmoix 24650 nmoleub 24652 xrtgioo 24728 xrge0tsms 24756 metdstri 24773 nmoleub2lem 25047 ovolf 25416 ovollb2 25423 ovoliun 25439 ovolre 25459 voliunlem3 25486 volsup 25490 icombl 25498 ioombl 25499 ismbfd 25573 itg2seq 25676 dvfsumrlim 25971 dvfsumrlim2 25972 radcnvcl 26359 xrlimcnp 26911 logfacbnd3 27167 log2sumbnd 27488 tgldimor 28482 xrdifh 32753 xrge0tsmsd 33045 unitssxrge0 33883 tpr2rico 33895 lmxrge0 33935 esumle 34041 esumlef 34045 esumpinfval 34056 esumpinfsum 34060 esumcvgsum 34071 ddemeas 34219 sxbrsigalem2 34270 omssubadd 34284 carsgclctunlem3 34304 signsply0 34535 ismblfin 37648 xrgepnfd 45320 supxrgelem 45326 supxrge 45327 infrpge 45340 xrlexaddrp 45341 infleinflem1 45359 infleinf 45361 infxrpnf 45435 ge0xrre 45522 iblsplit 45957 ismbl3 45977 ovolsplit 45979 sge0cl 46372 sge0less 46383 sge0pr 46385 sge0le 46398 sge0split 46400 carageniuncl 46514 ovnsubaddlem1 46561 hspmbl 46620 pimiooltgt 46701 pgrpgt2nabl 48347 |
| Copyright terms: Public domain | W3C validator |