Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pnfge | Structured version Visualization version GIF version |
Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pnfge | ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnlt 12910 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) | |
2 | pnfxr 11075 | . . 3 ⊢ +∞ ∈ ℝ* | |
3 | xrlenlt 11086 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) | |
4 | 2, 3 | mpan2 689 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) |
5 | 1, 4 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∈ wcel 2104 class class class wbr 5081 +∞cpnf 11052 ℝ*cxr 11054 < clt 11055 ≤ cle 11056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-xp 5606 df-cnv 5608 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 |
This theorem is referenced by: xnn0n0n1ge2b 12913 0lepnf 12914 nltpnft 12944 xrre2 12950 xnn0lem1lt 13024 xleadd1a 13033 xlt2add 13040 xsubge0 13041 xlesubadd 13043 xlemul1a 13068 elicore 13177 elico2 13189 iccmax 13201 elxrge0 13235 nfile 14119 hashdom 14139 hashdomi 14140 hashge1 14149 hashss 14169 hashge2el2difr 14240 pcdvdsb 16615 pc2dvds 16625 pcaddlem 16634 xrsdsreclblem 20689 leordtvallem1 22406 lecldbas 22415 isxmet2d 23525 blssec 23633 nmoix 23938 nmoleub 23940 xrtgioo 24014 xrge0tsms 24042 metdstri 24059 nmoleub2lem 24322 ovolf 24691 ovollb2 24698 ovoliun 24714 ovolre 24734 voliunlem3 24761 volsup 24765 icombl 24773 ioombl 24774 ismbfd 24848 itg2seq 24952 dvfsumrlim 25240 dvfsumrlim2 25241 radcnvcl 25621 xrlimcnp 26163 logfacbnd3 26416 log2sumbnd 26737 tgldimor 26908 xrdifh 31146 xrge0tsmsd 31362 unitssxrge0 31895 tpr2rico 31907 lmxrge0 31947 esumle 32071 esumlef 32075 esumpinfval 32086 esumpinfsum 32090 esumcvgsum 32101 ddemeas 32249 sxbrsigalem2 32298 omssubadd 32312 carsgclctunlem3 32332 signsply0 32575 ismblfin 35862 xrgepnfd 42918 supxrgelem 42924 supxrge 42925 infrpge 42938 xrlexaddrp 42939 infleinflem1 42957 infleinf 42959 infxrpnf 43034 pnfged 43062 ge0xrre 43118 iblsplit 43556 ismbl3 43576 ovolsplit 43578 sge0cl 43969 sge0less 43980 sge0pr 43982 sge0le 43995 sge0split 43997 carageniuncl 44111 ovnsubaddlem1 44158 hspmbl 44217 pimiooltgt 44298 pgrpgt2nabl 45760 |
Copyright terms: Public domain | W3C validator |