![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnfge | Structured version Visualization version GIF version |
Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pnfge | ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnlt 12340 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) | |
2 | pnfxr 10494 | . . 3 ⊢ +∞ ∈ ℝ* | |
3 | xrlenlt 10506 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) | |
4 | 2, 3 | mpan2 678 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) |
5 | 1, 4 | mpbird 249 | 1 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∈ wcel 2050 class class class wbr 4929 +∞cpnf 10471 ℝ*cxr 10473 < clt 10474 ≤ cle 10475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-xp 5413 df-cnv 5415 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 |
This theorem is referenced by: xnn0n0n1ge2b 12343 0lepnf 12344 nltpnft 12374 xrre2 12380 xleadd1a 12462 xlt2add 12469 xsubge0 12470 xlesubadd 12472 xlemul1a 12497 elicore 12605 elico2 12616 iccmax 12628 elxrge0 12661 nfile 13535 hashdom 13553 hashdomi 13554 hashge1 13563 hashss 13583 hashge2el2difr 13650 pcdvdsb 16061 pc2dvds 16071 pcaddlem 16080 xrsdsreclblem 20293 leordtvallem1 21522 lecldbas 21531 isxmet2d 22640 blssec 22748 nmoix 23041 nmoleub 23043 xrtgioo 23117 xrge0tsms 23145 metdstri 23162 nmoleub2lem 23421 ovolf 23786 ovollb2 23793 ovoliun 23809 ovolre 23829 voliunlem3 23856 volsup 23860 icombl 23868 ioombl 23869 ismbfd 23943 itg2seq 24046 dvfsumrlim 24331 dvfsumrlim2 24332 radcnvcl 24708 xrlimcnp 25248 logfacbnd3 25501 log2sumbnd 25822 tgldimor 25990 xnn0lem1lt 30254 xrdifh 30262 xrge0tsmsd 30536 unitssxrge0 30793 tpr2rico 30805 lmxrge0 30845 esumle 30967 esumlef 30971 esumpinfval 30982 esumpinfsum 30986 esumcvgsum 30997 ddemeas 31146 sxbrsigalem2 31195 omssubadd 31209 carsgclctunlem3 31229 signsply0 31473 ismblfin 34380 xrgepnfd 41034 supxrgelem 41040 supxrge 41041 infrpge 41054 xrlexaddrp 41055 infleinflem1 41073 infleinf 41075 infxrpnf 41158 pnfged 41187 ge0xrre 41244 iblsplit 41687 ismbl3 41708 ovolsplit 41710 sge0cl 42100 sge0less 42111 sge0pr 42113 sge0le 42126 sge0split 42128 carageniuncl 42242 ovnsubaddlem1 42289 hspmbl 42348 pimiooltgt 42426 pgrpgt2nabl 43786 |
Copyright terms: Public domain | W3C validator |