![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnfge | Structured version Visualization version GIF version |
Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pnfge | ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnlt 13167 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) | |
2 | pnfxr 11312 | . . 3 ⊢ +∞ ∈ ℝ* | |
3 | xrlenlt 11323 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) | |
4 | 2, 3 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) |
5 | 1, 4 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2105 class class class wbr 5147 +∞cpnf 11289 ℝ*cxr 11291 < clt 11292 ≤ cle 11293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-xp 5694 df-cnv 5696 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 |
This theorem is referenced by: xnn0n0n1ge2b 13170 0lepnf 13171 nltpnft 13202 xrre2 13208 xnn0lem1lt 13282 xleadd1a 13291 xlt2add 13298 xsubge0 13299 xlesubadd 13301 xlemul1a 13326 elicore 13435 elico2 13447 iccmax 13459 elxrge0 13493 nfile 14394 hashdom 14414 hashdomi 14415 hashge1 14424 hashss 14444 hashge2el2difr 14516 pcdvdsb 16902 pc2dvds 16912 pcaddlem 16921 xrsdsreclblem 21447 leordtvallem1 23233 lecldbas 23242 isxmet2d 24352 blssec 24460 nmoix 24765 nmoleub 24767 xrtgioo 24841 xrge0tsms 24869 metdstri 24886 nmoleub2lem 25160 ovolf 25530 ovollb2 25537 ovoliun 25553 ovolre 25573 voliunlem3 25600 volsup 25604 icombl 25612 ioombl 25613 ismbfd 25687 itg2seq 25791 dvfsumrlim 26086 dvfsumrlim2 26087 radcnvcl 26474 xrlimcnp 27025 logfacbnd3 27281 log2sumbnd 27602 tgldimor 28524 xrdifh 32788 xrge0tsmsd 33047 unitssxrge0 33860 tpr2rico 33872 lmxrge0 33912 esumle 34038 esumlef 34042 esumpinfval 34053 esumpinfsum 34057 esumcvgsum 34068 ddemeas 34216 sxbrsigalem2 34267 omssubadd 34281 carsgclctunlem3 34301 signsply0 34544 ismblfin 37647 xrgepnfd 45280 supxrgelem 45286 supxrge 45287 infrpge 45300 xrlexaddrp 45301 infleinflem1 45319 infleinf 45321 infxrpnf 45395 pnfged 45423 ge0xrre 45483 iblsplit 45921 ismbl3 45941 ovolsplit 45943 sge0cl 46336 sge0less 46347 sge0pr 46349 sge0le 46362 sge0split 46364 carageniuncl 46478 ovnsubaddlem1 46525 hspmbl 46584 pimiooltgt 46665 pgrpgt2nabl 48210 |
Copyright terms: Public domain | W3C validator |