| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfge | Structured version Visualization version GIF version | ||
| Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.) |
| Ref | Expression |
|---|---|
| pnfge | ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnlt 13030 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) | |
| 2 | pnfxr 11169 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 3 | xrlenlt 11180 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) | |
| 4 | 2, 3 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2109 class class class wbr 5092 +∞cpnf 11146 ℝ*cxr 11148 < clt 11149 ≤ cle 11150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-cnv 5627 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 |
| This theorem is referenced by: pnfged 13033 xnn0n0n1ge2b 13034 0lepnf 13035 nltpnft 13066 xrre2 13072 xnn0lem1lt 13146 xleadd1a 13155 xlt2add 13162 xsubge0 13163 xlesubadd 13165 xlemul1a 13190 elicore 13301 elico2 13313 iccmax 13326 elxrge0 13360 nfile 14266 hashdom 14286 hashdomi 14287 hashge1 14296 hashss 14316 hashge2el2difr 14388 pcdvdsb 16781 pc2dvds 16791 pcaddlem 16800 xrsdsreclblem 21319 leordtvallem1 23095 lecldbas 23104 isxmet2d 24213 blssec 24321 nmoix 24615 nmoleub 24617 xrtgioo 24693 xrge0tsms 24721 metdstri 24738 nmoleub2lem 25012 ovolf 25381 ovollb2 25388 ovoliun 25404 ovolre 25424 voliunlem3 25451 volsup 25455 icombl 25463 ioombl 25464 ismbfd 25538 itg2seq 25641 dvfsumrlim 25936 dvfsumrlim2 25937 radcnvcl 26324 xrlimcnp 26876 logfacbnd3 27132 log2sumbnd 27453 tgldimor 28447 xrdifh 32723 xrge0tsmsd 33015 unitssxrge0 33867 tpr2rico 33879 lmxrge0 33919 esumle 34025 esumlef 34029 esumpinfval 34040 esumpinfsum 34044 esumcvgsum 34055 ddemeas 34203 sxbrsigalem2 34254 omssubadd 34268 carsgclctunlem3 34288 signsply0 34519 ismblfin 37641 xrgepnfd 45311 supxrgelem 45317 supxrge 45318 infrpge 45331 xrlexaddrp 45332 infleinflem1 45349 infleinf 45351 infxrpnf 45425 ge0xrre 45512 iblsplit 45947 ismbl3 45967 ovolsplit 45969 sge0cl 46362 sge0less 46373 sge0pr 46375 sge0le 46388 sge0split 46390 carageniuncl 46504 ovnsubaddlem1 46551 hspmbl 46610 pimiooltgt 46691 pgrpgt2nabl 48350 |
| Copyright terms: Public domain | W3C validator |