MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  posi Structured version   Visualization version   GIF version

Theorem posi 18364
Description: Lemma for poset properties. (Contributed by NM, 11-Sep-2011.)
Hypotheses
Ref Expression
posi.b 𝐵 = (Base‘𝐾)
posi.l = (le‘𝐾)
Assertion
Ref Expression
posi ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))

Proof of Theorem posi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 posi.b . . . 4 𝐵 = (Base‘𝐾)
2 posi.l . . . 4 = (le‘𝐾)
31, 2ispos 18361 . . 3 (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
43simprbi 496 . 2 (𝐾 ∈ Poset → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)))
5 breq1 5145 . . . . 5 (𝑥 = 𝑋 → (𝑥 𝑥𝑋 𝑥))
6 breq2 5146 . . . . 5 (𝑥 = 𝑋 → (𝑋 𝑥𝑋 𝑋))
75, 6bitrd 279 . . . 4 (𝑥 = 𝑋 → (𝑥 𝑥𝑋 𝑋))
8 breq1 5145 . . . . . 6 (𝑥 = 𝑋 → (𝑥 𝑦𝑋 𝑦))
9 breq2 5146 . . . . . 6 (𝑥 = 𝑋 → (𝑦 𝑥𝑦 𝑋))
108, 9anbi12d 632 . . . . 5 (𝑥 = 𝑋 → ((𝑥 𝑦𝑦 𝑥) ↔ (𝑋 𝑦𝑦 𝑋)))
11 eqeq1 2740 . . . . 5 (𝑥 = 𝑋 → (𝑥 = 𝑦𝑋 = 𝑦))
1210, 11imbi12d 344 . . . 4 (𝑥 = 𝑋 → (((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ↔ ((𝑋 𝑦𝑦 𝑋) → 𝑋 = 𝑦)))
138anbi1d 631 . . . . 5 (𝑥 = 𝑋 → ((𝑥 𝑦𝑦 𝑧) ↔ (𝑋 𝑦𝑦 𝑧)))
14 breq1 5145 . . . . 5 (𝑥 = 𝑋 → (𝑥 𝑧𝑋 𝑧))
1513, 14imbi12d 344 . . . 4 (𝑥 = 𝑋 → (((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧) ↔ ((𝑋 𝑦𝑦 𝑧) → 𝑋 𝑧)))
167, 12, 153anbi123d 1437 . . 3 (𝑥 = 𝑋 → ((𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)) ↔ (𝑋 𝑋 ∧ ((𝑋 𝑦𝑦 𝑋) → 𝑋 = 𝑦) ∧ ((𝑋 𝑦𝑦 𝑧) → 𝑋 𝑧))))
17 breq2 5146 . . . . . 6 (𝑦 = 𝑌 → (𝑋 𝑦𝑋 𝑌))
18 breq1 5145 . . . . . 6 (𝑦 = 𝑌 → (𝑦 𝑋𝑌 𝑋))
1917, 18anbi12d 632 . . . . 5 (𝑦 = 𝑌 → ((𝑋 𝑦𝑦 𝑋) ↔ (𝑋 𝑌𝑌 𝑋)))
20 eqeq2 2748 . . . . 5 (𝑦 = 𝑌 → (𝑋 = 𝑦𝑋 = 𝑌))
2119, 20imbi12d 344 . . . 4 (𝑦 = 𝑌 → (((𝑋 𝑦𝑦 𝑋) → 𝑋 = 𝑦) ↔ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌)))
22 breq1 5145 . . . . . 6 (𝑦 = 𝑌 → (𝑦 𝑧𝑌 𝑧))
2317, 22anbi12d 632 . . . . 5 (𝑦 = 𝑌 → ((𝑋 𝑦𝑦 𝑧) ↔ (𝑋 𝑌𝑌 𝑧)))
2423imbi1d 341 . . . 4 (𝑦 = 𝑌 → (((𝑋 𝑦𝑦 𝑧) → 𝑋 𝑧) ↔ ((𝑋 𝑌𝑌 𝑧) → 𝑋 𝑧)))
2521, 243anbi23d 1440 . . 3 (𝑦 = 𝑌 → ((𝑋 𝑋 ∧ ((𝑋 𝑦𝑦 𝑋) → 𝑋 = 𝑦) ∧ ((𝑋 𝑦𝑦 𝑧) → 𝑋 𝑧)) ↔ (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑧) → 𝑋 𝑧))))
26 breq2 5146 . . . . . 6 (𝑧 = 𝑍 → (𝑌 𝑧𝑌 𝑍))
2726anbi2d 630 . . . . 5 (𝑧 = 𝑍 → ((𝑋 𝑌𝑌 𝑧) ↔ (𝑋 𝑌𝑌 𝑍)))
28 breq2 5146 . . . . 5 (𝑧 = 𝑍 → (𝑋 𝑧𝑋 𝑍))
2927, 28imbi12d 344 . . . 4 (𝑧 = 𝑍 → (((𝑋 𝑌𝑌 𝑧) → 𝑋 𝑧) ↔ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
30293anbi3d 1443 . . 3 (𝑧 = 𝑍 → ((𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑧) → 𝑋 𝑧)) ↔ (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍))))
3116, 25, 30rspc3v 3637 . 2 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍))))
324, 31mpan9 506 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  Vcvv 3479   class class class wbr 5142  cfv 6560  Basecbs 17248  lecple 17305  Posetcpo 18354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-nul 5305
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-iota 6513  df-fv 6568  df-poset 18360
This theorem is referenced by:  posasymb  18366  postr  18367
  Copyright terms: Public domain W3C validator