MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  posi Structured version   Visualization version   GIF version

Theorem posi 17676
Description: Lemma for poset properties. (Contributed by NM, 11-Sep-2011.)
Hypotheses
Ref Expression
posi.b 𝐵 = (Base‘𝐾)
posi.l = (le‘𝐾)
Assertion
Ref Expression
posi ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))

Proof of Theorem posi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 posi.b . . . 4 𝐵 = (Base‘𝐾)
2 posi.l . . . 4 = (le‘𝐾)
31, 2ispos 17673 . . 3 (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
43simprbi 500 . 2 (𝐾 ∈ Poset → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)))
5 breq1 5033 . . . . 5 (𝑥 = 𝑋 → (𝑥 𝑥𝑋 𝑥))
6 breq2 5034 . . . . 5 (𝑥 = 𝑋 → (𝑋 𝑥𝑋 𝑋))
75, 6bitrd 282 . . . 4 (𝑥 = 𝑋 → (𝑥 𝑥𝑋 𝑋))
8 breq1 5033 . . . . . 6 (𝑥 = 𝑋 → (𝑥 𝑦𝑋 𝑦))
9 breq2 5034 . . . . . 6 (𝑥 = 𝑋 → (𝑦 𝑥𝑦 𝑋))
108, 9anbi12d 634 . . . . 5 (𝑥 = 𝑋 → ((𝑥 𝑦𝑦 𝑥) ↔ (𝑋 𝑦𝑦 𝑋)))
11 eqeq1 2742 . . . . 5 (𝑥 = 𝑋 → (𝑥 = 𝑦𝑋 = 𝑦))
1210, 11imbi12d 348 . . . 4 (𝑥 = 𝑋 → (((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ↔ ((𝑋 𝑦𝑦 𝑋) → 𝑋 = 𝑦)))
138anbi1d 633 . . . . 5 (𝑥 = 𝑋 → ((𝑥 𝑦𝑦 𝑧) ↔ (𝑋 𝑦𝑦 𝑧)))
14 breq1 5033 . . . . 5 (𝑥 = 𝑋 → (𝑥 𝑧𝑋 𝑧))
1513, 14imbi12d 348 . . . 4 (𝑥 = 𝑋 → (((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧) ↔ ((𝑋 𝑦𝑦 𝑧) → 𝑋 𝑧)))
167, 12, 153anbi123d 1437 . . 3 (𝑥 = 𝑋 → ((𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)) ↔ (𝑋 𝑋 ∧ ((𝑋 𝑦𝑦 𝑋) → 𝑋 = 𝑦) ∧ ((𝑋 𝑦𝑦 𝑧) → 𝑋 𝑧))))
17 breq2 5034 . . . . . 6 (𝑦 = 𝑌 → (𝑋 𝑦𝑋 𝑌))
18 breq1 5033 . . . . . 6 (𝑦 = 𝑌 → (𝑦 𝑋𝑌 𝑋))
1917, 18anbi12d 634 . . . . 5 (𝑦 = 𝑌 → ((𝑋 𝑦𝑦 𝑋) ↔ (𝑋 𝑌𝑌 𝑋)))
20 eqeq2 2750 . . . . 5 (𝑦 = 𝑌 → (𝑋 = 𝑦𝑋 = 𝑌))
2119, 20imbi12d 348 . . . 4 (𝑦 = 𝑌 → (((𝑋 𝑦𝑦 𝑋) → 𝑋 = 𝑦) ↔ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌)))
22 breq1 5033 . . . . . 6 (𝑦 = 𝑌 → (𝑦 𝑧𝑌 𝑧))
2317, 22anbi12d 634 . . . . 5 (𝑦 = 𝑌 → ((𝑋 𝑦𝑦 𝑧) ↔ (𝑋 𝑌𝑌 𝑧)))
2423imbi1d 345 . . . 4 (𝑦 = 𝑌 → (((𝑋 𝑦𝑦 𝑧) → 𝑋 𝑧) ↔ ((𝑋 𝑌𝑌 𝑧) → 𝑋 𝑧)))
2521, 243anbi23d 1440 . . 3 (𝑦 = 𝑌 → ((𝑋 𝑋 ∧ ((𝑋 𝑦𝑦 𝑋) → 𝑋 = 𝑦) ∧ ((𝑋 𝑦𝑦 𝑧) → 𝑋 𝑧)) ↔ (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑧) → 𝑋 𝑧))))
26 breq2 5034 . . . . . 6 (𝑧 = 𝑍 → (𝑌 𝑧𝑌 𝑍))
2726anbi2d 632 . . . . 5 (𝑧 = 𝑍 → ((𝑋 𝑌𝑌 𝑧) ↔ (𝑋 𝑌𝑌 𝑍)))
28 breq2 5034 . . . . 5 (𝑧 = 𝑍 → (𝑋 𝑧𝑋 𝑍))
2927, 28imbi12d 348 . . . 4 (𝑧 = 𝑍 → (((𝑋 𝑌𝑌 𝑧) → 𝑋 𝑧) ↔ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
30293anbi3d 1443 . . 3 (𝑧 = 𝑍 → ((𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑧) → 𝑋 𝑧)) ↔ (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍))))
3116, 25, 30rspc3v 3539 . 2 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍))))
324, 31mpan9 510 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3053  Vcvv 3398   class class class wbr 5030  cfv 6339  Basecbs 16586  lecple 16675  Posetcpo 17666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-nul 5174
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-rex 3059  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-iota 6297  df-fv 6347  df-poset 17672
This theorem is referenced by:  posasymb  17678  postr  17679
  Copyright terms: Public domain W3C validator