MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  posi Structured version   Visualization version   GIF version

Theorem posi 18270
Description: Lemma for poset properties. (Contributed by NM, 11-Sep-2011.)
Hypotheses
Ref Expression
posi.b 𝐡 = (Baseβ€˜πΎ)
posi.l ≀ = (leβ€˜πΎ)
Assertion
Ref Expression
posi ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ≀ 𝑋 ∧ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑋) β†’ 𝑋 = π‘Œ) ∧ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑍) β†’ 𝑋 ≀ 𝑍)))

Proof of Theorem posi
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 posi.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 posi.l . . . 4 ≀ = (leβ€˜πΎ)
31, 2ispos 18267 . . 3 (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧))))
43simprbi 498 . 2 (𝐾 ∈ Poset β†’ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)))
5 breq1 5152 . . . . 5 (π‘₯ = 𝑋 β†’ (π‘₯ ≀ π‘₯ ↔ 𝑋 ≀ π‘₯))
6 breq2 5153 . . . . 5 (π‘₯ = 𝑋 β†’ (𝑋 ≀ π‘₯ ↔ 𝑋 ≀ 𝑋))
75, 6bitrd 279 . . . 4 (π‘₯ = 𝑋 β†’ (π‘₯ ≀ π‘₯ ↔ 𝑋 ≀ 𝑋))
8 breq1 5152 . . . . . 6 (π‘₯ = 𝑋 β†’ (π‘₯ ≀ 𝑦 ↔ 𝑋 ≀ 𝑦))
9 breq2 5153 . . . . . 6 (π‘₯ = 𝑋 β†’ (𝑦 ≀ π‘₯ ↔ 𝑦 ≀ 𝑋))
108, 9anbi12d 632 . . . . 5 (π‘₯ = 𝑋 β†’ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) ↔ (𝑋 ≀ 𝑦 ∧ 𝑦 ≀ 𝑋)))
11 eqeq1 2737 . . . . 5 (π‘₯ = 𝑋 β†’ (π‘₯ = 𝑦 ↔ 𝑋 = 𝑦))
1210, 11imbi12d 345 . . . 4 (π‘₯ = 𝑋 β†’ (((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ↔ ((𝑋 ≀ 𝑦 ∧ 𝑦 ≀ 𝑋) β†’ 𝑋 = 𝑦)))
138anbi1d 631 . . . . 5 (π‘₯ = 𝑋 β†’ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) ↔ (𝑋 ≀ 𝑦 ∧ 𝑦 ≀ 𝑧)))
14 breq1 5152 . . . . 5 (π‘₯ = 𝑋 β†’ (π‘₯ ≀ 𝑧 ↔ 𝑋 ≀ 𝑧))
1513, 14imbi12d 345 . . . 4 (π‘₯ = 𝑋 β†’ (((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧) ↔ ((𝑋 ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ 𝑋 ≀ 𝑧)))
167, 12, 153anbi123d 1437 . . 3 (π‘₯ = 𝑋 β†’ ((π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ↔ (𝑋 ≀ 𝑋 ∧ ((𝑋 ≀ 𝑦 ∧ 𝑦 ≀ 𝑋) β†’ 𝑋 = 𝑦) ∧ ((𝑋 ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ 𝑋 ≀ 𝑧))))
17 breq2 5153 . . . . . 6 (𝑦 = π‘Œ β†’ (𝑋 ≀ 𝑦 ↔ 𝑋 ≀ π‘Œ))
18 breq1 5152 . . . . . 6 (𝑦 = π‘Œ β†’ (𝑦 ≀ 𝑋 ↔ π‘Œ ≀ 𝑋))
1917, 18anbi12d 632 . . . . 5 (𝑦 = π‘Œ β†’ ((𝑋 ≀ 𝑦 ∧ 𝑦 ≀ 𝑋) ↔ (𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑋)))
20 eqeq2 2745 . . . . 5 (𝑦 = π‘Œ β†’ (𝑋 = 𝑦 ↔ 𝑋 = π‘Œ))
2119, 20imbi12d 345 . . . 4 (𝑦 = π‘Œ β†’ (((𝑋 ≀ 𝑦 ∧ 𝑦 ≀ 𝑋) β†’ 𝑋 = 𝑦) ↔ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑋) β†’ 𝑋 = π‘Œ)))
22 breq1 5152 . . . . . 6 (𝑦 = π‘Œ β†’ (𝑦 ≀ 𝑧 ↔ π‘Œ ≀ 𝑧))
2317, 22anbi12d 632 . . . . 5 (𝑦 = π‘Œ β†’ ((𝑋 ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) ↔ (𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑧)))
2423imbi1d 342 . . . 4 (𝑦 = π‘Œ β†’ (((𝑋 ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ 𝑋 ≀ 𝑧) ↔ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑧) β†’ 𝑋 ≀ 𝑧)))
2521, 243anbi23d 1440 . . 3 (𝑦 = π‘Œ β†’ ((𝑋 ≀ 𝑋 ∧ ((𝑋 ≀ 𝑦 ∧ 𝑦 ≀ 𝑋) β†’ 𝑋 = 𝑦) ∧ ((𝑋 ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ 𝑋 ≀ 𝑧)) ↔ (𝑋 ≀ 𝑋 ∧ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑋) β†’ 𝑋 = π‘Œ) ∧ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑧) β†’ 𝑋 ≀ 𝑧))))
26 breq2 5153 . . . . . 6 (𝑧 = 𝑍 β†’ (π‘Œ ≀ 𝑧 ↔ π‘Œ ≀ 𝑍))
2726anbi2d 630 . . . . 5 (𝑧 = 𝑍 β†’ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑧) ↔ (𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑍)))
28 breq2 5153 . . . . 5 (𝑧 = 𝑍 β†’ (𝑋 ≀ 𝑧 ↔ 𝑋 ≀ 𝑍))
2927, 28imbi12d 345 . . . 4 (𝑧 = 𝑍 β†’ (((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑧) β†’ 𝑋 ≀ 𝑧) ↔ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑍) β†’ 𝑋 ≀ 𝑍)))
30293anbi3d 1443 . . 3 (𝑧 = 𝑍 β†’ ((𝑋 ≀ 𝑋 ∧ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑋) β†’ 𝑋 = π‘Œ) ∧ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑧) β†’ 𝑋 ≀ 𝑧)) ↔ (𝑋 ≀ 𝑋 ∧ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑋) β†’ 𝑋 = π‘Œ) ∧ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑍) β†’ 𝑋 ≀ 𝑍))))
3116, 25, 30rspc3v 3628 . 2 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) β†’ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) β†’ (𝑋 ≀ 𝑋 ∧ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑋) β†’ 𝑋 = π‘Œ) ∧ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑍) β†’ 𝑋 ≀ 𝑍))))
324, 31mpan9 508 1 ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ≀ 𝑋 ∧ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑋) β†’ 𝑋 = π‘Œ) ∧ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑍) β†’ 𝑋 ≀ 𝑍)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  Vcvv 3475   class class class wbr 5149  β€˜cfv 6544  Basecbs 17144  lecple 17204  Posetcpo 18260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-poset 18266
This theorem is referenced by:  posasymb  18272  postr  18273
  Copyright terms: Public domain W3C validator