MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  posprs Structured version   Visualization version   GIF version

Theorem posprs 18277
Description: A poset is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
posprs (𝐾 ∈ Poset → 𝐾 ∈ Proset )

Proof of Theorem posprs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2729 . . 3 (le‘𝐾) = (le‘𝐾)
31, 2ispos2 18276 . 2 (𝐾 ∈ Poset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦)))
43simplbi 497 1 (𝐾 ∈ Poset → 𝐾 ∈ Proset )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044   class class class wbr 5107  cfv 6511  Basecbs 17179  lecple 17227   Proset cproset 18253  Posetcpo 18268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-proset 18255  df-poset 18274
This theorem is referenced by:  posref  18279  isipodrs  18496  pwrssmgc  32926  mgcf1olem1  32927  mgcf1olem2  32928  mgcf1o  32929  nsgmgc  33383  ordtrest2NEWlem  33912  ordtrest2NEW  33913  ordtconnlem1  33914  exbasprs  48965  basresprsfo  48967  discbas  49561  discthin  49562
  Copyright terms: Public domain W3C validator