| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > posprs | Structured version Visualization version GIF version | ||
| Description: A poset is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| posprs | ⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2735 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | 1, 2 | ispos2 18327 | . 2 ⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 class class class wbr 5119 ‘cfv 6531 Basecbs 17228 lecple 17278 Proset cproset 18304 Posetcpo 18319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-proset 18306 df-poset 18325 |
| This theorem is referenced by: posref 18330 isipodrs 18547 pwrssmgc 32980 mgcf1olem1 32981 mgcf1olem2 32982 mgcf1o 32983 nsgmgc 33427 ordtrest2NEWlem 33953 ordtrest2NEW 33954 ordtconnlem1 33955 exbasprs 48951 basresprsfo 48953 discbas 49449 discthin 49450 |
| Copyright terms: Public domain | W3C validator |