Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > posprs | Structured version Visualization version GIF version |
Description: A poset is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
posprs | ⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2739 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | 1, 2 | ispos2 17923 | . 2 ⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦))) |
4 | 3 | simplbi 501 | 1 ⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2112 ∀wral 3064 class class class wbr 5070 ‘cfv 6415 Basecbs 16815 lecple 16870 Proset cproset 17901 Posetcpo 17915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-nul 5223 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-sbc 3713 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6373 df-fv 6423 df-proset 17903 df-poset 17921 |
This theorem is referenced by: posref 17926 isipodrs 18145 pwrssmgc 31155 mgcf1olem1 31156 mgcf1olem2 31157 mgcf1o 31158 nsgmgc 31474 ordtrest2NEWlem 31749 ordtrest2NEW 31750 ordtconnlem1 31751 |
Copyright terms: Public domain | W3C validator |