Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > posprs | Structured version Visualization version GIF version |
Description: A poset is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
posprs | ⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2759 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2759 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | 1, 2 | ispos2 17625 | . 2 ⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦))) |
4 | 3 | simplbi 502 | 1 ⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∈ wcel 2112 ∀wral 3071 class class class wbr 5033 ‘cfv 6336 Basecbs 16542 lecple 16631 Proset cproset 17603 Posetcpo 17617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-nul 5177 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-iota 6295 df-fv 6344 df-proset 17605 df-poset 17623 |
This theorem is referenced by: posref 17628 isipodrs 17838 pwrssmgc 30805 mgcf1olem1 30806 mgcf1olem2 30807 mgcf1o 30808 nsgmgc 31119 ordtrest2NEWlem 31394 ordtrest2NEW 31395 ordtconnlem1 31396 |
Copyright terms: Public domain | W3C validator |