| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > posprs | Structured version Visualization version GIF version | ||
| Description: A poset is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| posprs | ⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2733 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | 1, 2 | ispos2 18229 | . 2 ⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 class class class wbr 5095 ‘cfv 6489 Basecbs 17127 lecple 17175 Proset cproset 18206 Posetcpo 18221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-proset 18208 df-poset 18227 |
| This theorem is referenced by: posref 18232 isipodrs 18451 pwrssmgc 33010 mgcf1olem1 33011 mgcf1olem2 33012 mgcf1o 33013 nsgmgc 33421 ordtrest2NEWlem 34007 ordtrest2NEW 34008 ordtconnlem1 34009 exbasprs 49138 basresprsfo 49140 discbas 49733 discthin 49734 |
| Copyright terms: Public domain | W3C validator |