MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  posprs Structured version   Visualization version   GIF version

Theorem posprs 18284
Description: A poset is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
posprs (𝐾 ∈ Poset → 𝐾 ∈ Proset )

Proof of Theorem posprs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2730 . . 3 (le‘𝐾) = (le‘𝐾)
31, 2ispos2 18283 . 2 (𝐾 ∈ Poset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦)))
43simplbi 497 1 (𝐾 ∈ Poset → 𝐾 ∈ Proset )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3045   class class class wbr 5110  cfv 6514  Basecbs 17186  lecple 17234   Proset cproset 18260  Posetcpo 18275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-proset 18262  df-poset 18281
This theorem is referenced by:  posref  18286  isipodrs  18503  pwrssmgc  32933  mgcf1olem1  32934  mgcf1olem2  32935  mgcf1o  32936  nsgmgc  33390  ordtrest2NEWlem  33919  ordtrest2NEW  33920  ordtconnlem1  33921  exbasprs  48969  basresprsfo  48971  discbas  49565  discthin  49566
  Copyright terms: Public domain W3C validator