| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > posprs | Structured version Visualization version GIF version | ||
| Description: A poset is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| posprs | ⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2731 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | 1, 2 | ispos2 18216 | . 2 ⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 class class class wbr 5086 ‘cfv 6476 Basecbs 17115 lecple 17163 Proset cproset 18193 Posetcpo 18208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5239 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-proset 18195 df-poset 18214 |
| This theorem is referenced by: posref 18219 isipodrs 18438 pwrssmgc 32973 mgcf1olem1 32974 mgcf1olem2 32975 mgcf1o 32976 nsgmgc 33369 ordtrest2NEWlem 33927 ordtrest2NEW 33928 ordtconnlem1 33929 exbasprs 49008 basresprsfo 49010 discbas 49604 discthin 49605 |
| Copyright terms: Public domain | W3C validator |