MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  posasymb Structured version   Visualization version   GIF version

Theorem posasymb 18256
Description: A poset ordering is asymmetric. (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
posi.b 𝐵 = (Base‘𝐾)
posi.l = (le‘𝐾)
Assertion
Ref Expression
posasymb ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))

Proof of Theorem posasymb
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Poset)
2 simp2 1137 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
3 simp3 1138 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
4 posi.b . . . . 5 𝐵 = (Base‘𝐾)
5 posi.l . . . . 5 = (le‘𝐾)
64, 5posi 18254 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑌𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑌) → 𝑋 𝑌)))
71, 2, 3, 3, 6syl13anc 1374 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑌) → 𝑋 𝑌)))
87simp2d 1143 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌))
94, 5posref 18255 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋 𝑋)
10 breq2 5106 . . . . 5 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
119, 10syl5ibcom 245 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 = 𝑌𝑋 𝑌))
12 breq1 5105 . . . . 5 (𝑋 = 𝑌 → (𝑋 𝑋𝑌 𝑋))
139, 12syl5ibcom 245 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 = 𝑌𝑌 𝑋))
1411, 13jcad 512 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 = 𝑌 → (𝑋 𝑌𝑌 𝑋)))
15143adant3 1132 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌 → (𝑋 𝑌𝑌 𝑋)))
168, 15impbid 212 1 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  Basecbs 17155  lecple 17203  Posetcpo 18244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5256
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-proset 18231  df-poset 18250
This theorem is referenced by:  odupos  18263  pltnle  18273  pltval3  18274  lublecllem  18295  poslubmo  18346  posglbmo  18347  latasymb  18377  latleeqj1  18386  latleeqm1  18402  posrasymb  32864  mgcf1olem1  32900  mgcf1olem2  32901  archirngz  33116  archiabllem1a  33118  ople0  39153  op1le  39158  atlle0  39271
  Copyright terms: Public domain W3C validator