|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > posasymb | Structured version Visualization version GIF version | ||
| Description: A poset ordering is asymmetric. (Contributed by NM, 21-Oct-2011.) | 
| Ref | Expression | 
|---|---|
| posi.b | ⊢ 𝐵 = (Base‘𝐾) | 
| posi.l | ⊢ ≤ = (le‘𝐾) | 
| Ref | Expression | 
|---|---|
| posasymb | ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp1 1136 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) | |
| 2 | simp2 1137 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 3 | simp3 1138 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 4 | posi.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | posi.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 6 | 4, 5 | posi 18364 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌) → 𝑋 ≤ 𝑌))) | 
| 7 | 1, 2, 3, 3, 6 | syl13anc 1373 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌) → 𝑋 ≤ 𝑌))) | 
| 8 | 7 | simp2d 1143 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌)) | 
| 9 | 4, 5 | posref 18365 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) | 
| 10 | breq2 5146 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑋 ≤ 𝑋 ↔ 𝑋 ≤ 𝑌)) | |
| 11 | 9, 10 | syl5ibcom 245 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑌 → 𝑋 ≤ 𝑌)) | 
| 12 | breq1 5145 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑋 ≤ 𝑋 ↔ 𝑌 ≤ 𝑋)) | |
| 13 | 9, 12 | syl5ibcom 245 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑌 → 𝑌 ≤ 𝑋)) | 
| 14 | 11, 13 | jcad 512 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑌 → (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋))) | 
| 15 | 14 | 3adant3 1132 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 → (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋))) | 
| 16 | 8, 15 | impbid 212 | 1 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 ‘cfv 6560 Basecbs 17248 lecple 17305 Posetcpo 18354 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5305 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-proset 18341 df-poset 18360 | 
| This theorem is referenced by: odupos 18374 pltnle 18384 pltval3 18385 lublecllem 18406 poslubmo 18457 posglbmo 18458 latasymb 18488 latleeqj1 18497 latleeqm1 18513 posrasymb 32956 mgcf1olem1 32992 mgcf1olem2 32993 archirngz 33197 archiabllem1a 33199 ople0 39189 op1le 39194 atlle0 39307 | 
| Copyright terms: Public domain | W3C validator |