| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > posasymb | Structured version Visualization version GIF version | ||
| Description: A poset ordering is asymmetric. (Contributed by NM, 21-Oct-2011.) |
| Ref | Expression |
|---|---|
| posi.b | ⊢ 𝐵 = (Base‘𝐾) |
| posi.l | ⊢ ≤ = (le‘𝐾) |
| Ref | Expression |
|---|---|
| posasymb | ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) | |
| 2 | simp2 1137 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 3 | simp3 1138 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 4 | posi.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | posi.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 6 | 4, 5 | posi 18334 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌) → 𝑋 ≤ 𝑌))) |
| 7 | 1, 2, 3, 3, 6 | syl13anc 1374 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌) → 𝑋 ≤ 𝑌))) |
| 8 | 7 | simp2d 1143 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌)) |
| 9 | 4, 5 | posref 18335 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| 10 | breq2 5128 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑋 ≤ 𝑋 ↔ 𝑋 ≤ 𝑌)) | |
| 11 | 9, 10 | syl5ibcom 245 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑌 → 𝑋 ≤ 𝑌)) |
| 12 | breq1 5127 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑋 ≤ 𝑋 ↔ 𝑌 ≤ 𝑋)) | |
| 13 | 9, 12 | syl5ibcom 245 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑌 → 𝑌 ≤ 𝑋)) |
| 14 | 11, 13 | jcad 512 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑌 → (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋))) |
| 15 | 14 | 3adant3 1132 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 → (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋))) |
| 16 | 8, 15 | impbid 212 | 1 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 Basecbs 17233 lecple 17283 Posetcpo 18324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-proset 18311 df-poset 18330 |
| This theorem is referenced by: odupos 18343 pltnle 18353 pltval3 18354 lublecllem 18375 poslubmo 18426 posglbmo 18427 latasymb 18457 latleeqj1 18466 latleeqm1 18482 posrasymb 32950 mgcf1olem1 32986 mgcf1olem2 32987 archirngz 33192 archiabllem1a 33194 ople0 39210 op1le 39215 atlle0 39328 |
| Copyright terms: Public domain | W3C validator |