MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  posasymb Structured version   Visualization version   GIF version

Theorem posasymb 18225
Description: A poset ordering is asymmetric. (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
posi.b 𝐵 = (Base‘𝐾)
posi.l = (le‘𝐾)
Assertion
Ref Expression
posasymb ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))

Proof of Theorem posasymb
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Poset)
2 simp2 1137 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
3 simp3 1138 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
4 posi.b . . . . 5 𝐵 = (Base‘𝐾)
5 posi.l . . . . 5 = (le‘𝐾)
64, 5posi 18223 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑌𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑌) → 𝑋 𝑌)))
71, 2, 3, 3, 6syl13anc 1374 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑌) → 𝑋 𝑌)))
87simp2d 1143 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌))
94, 5posref 18224 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋 𝑋)
10 breq2 5093 . . . . 5 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
119, 10syl5ibcom 245 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 = 𝑌𝑋 𝑌))
12 breq1 5092 . . . . 5 (𝑋 = 𝑌 → (𝑋 𝑋𝑌 𝑋))
139, 12syl5ibcom 245 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 = 𝑌𝑌 𝑋))
1411, 13jcad 512 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 = 𝑌 → (𝑋 𝑌𝑌 𝑋)))
15143adant3 1132 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌 → (𝑋 𝑌𝑌 𝑋)))
168, 15impbid 212 1 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  Basecbs 17120  lecple 17168  Posetcpo 18213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-proset 18200  df-poset 18219
This theorem is referenced by:  odupos  18232  pltnle  18242  pltval3  18243  lublecllem  18264  poslubmo  18315  posglbmo  18316  latasymb  18348  latleeqj1  18357  latleeqm1  18373  posrasymb  32948  mgcf1olem1  32982  mgcf1olem2  32983  archirngz  33158  archiabllem1a  33160  ople0  39234  op1le  39239  atlle0  39352
  Copyright terms: Public domain W3C validator