MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  posasymb Structured version   Visualization version   GIF version

Theorem posasymb 17305
Description: A poset ordering is asymmetric. (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
posi.b 𝐵 = (Base‘𝐾)
posi.l = (le‘𝐾)
Assertion
Ref Expression
posasymb ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))

Proof of Theorem posasymb
StepHypRef Expression
1 simp1 1170 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Poset)
2 simp2 1171 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
3 simp3 1172 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
4 posi.b . . . . 5 𝐵 = (Base‘𝐾)
5 posi.l . . . . 5 = (le‘𝐾)
64, 5posi 17303 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑌𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑌) → 𝑋 𝑌)))
71, 2, 3, 3, 6syl13anc 1495 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑌) → 𝑋 𝑌)))
87simp2d 1177 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌))
94, 5posref 17304 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋 𝑋)
10 breq2 4877 . . . . 5 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
119, 10syl5ibcom 237 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 = 𝑌𝑋 𝑌))
12 breq1 4876 . . . . 5 (𝑋 = 𝑌 → (𝑋 𝑋𝑌 𝑋))
139, 12syl5ibcom 237 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 = 𝑌𝑌 𝑋))
1411, 13jcad 508 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 = 𝑌 → (𝑋 𝑌𝑌 𝑋)))
15143adant3 1166 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌 → (𝑋 𝑌𝑌 𝑋)))
168, 15impbid 204 1 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164   class class class wbr 4873  cfv 6123  Basecbs 16222  lecple 16312  Posetcpo 17293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-nul 5013
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-iota 6086  df-fv 6131  df-proset 17281  df-poset 17299
This theorem is referenced by:  pltnle  17319  pltval3  17320  lublecllem  17341  latasymb  17407  latleeqj1  17416  latleeqm1  17432  odupos  17488  poslubmo  17499  posglbmo  17500  posrasymb  30191  archirngz  30277  archiabllem1a  30279  ople0  35255  op1le  35260  atlle0  35373
  Copyright terms: Public domain W3C validator