| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > posasymb | Structured version Visualization version GIF version | ||
| Description: A poset ordering is asymmetric. (Contributed by NM, 21-Oct-2011.) |
| Ref | Expression |
|---|---|
| posi.b | ⊢ 𝐵 = (Base‘𝐾) |
| posi.l | ⊢ ≤ = (le‘𝐾) |
| Ref | Expression |
|---|---|
| posasymb | ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) | |
| 2 | simp2 1137 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 3 | simp3 1138 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 4 | posi.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | posi.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 6 | 4, 5 | posi 18278 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌) → 𝑋 ≤ 𝑌))) |
| 7 | 1, 2, 3, 3, 6 | syl13anc 1374 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌) → 𝑋 ≤ 𝑌))) |
| 8 | 7 | simp2d 1143 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌)) |
| 9 | 4, 5 | posref 18279 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| 10 | breq2 5111 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑋 ≤ 𝑋 ↔ 𝑋 ≤ 𝑌)) | |
| 11 | 9, 10 | syl5ibcom 245 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑌 → 𝑋 ≤ 𝑌)) |
| 12 | breq1 5110 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑋 ≤ 𝑋 ↔ 𝑌 ≤ 𝑋)) | |
| 13 | 9, 12 | syl5ibcom 245 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑌 → 𝑌 ≤ 𝑋)) |
| 14 | 11, 13 | jcad 512 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑌 → (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋))) |
| 15 | 14 | 3adant3 1132 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 → (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋))) |
| 16 | 8, 15 | impbid 212 | 1 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 lecple 17227 Posetcpo 18268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-proset 18255 df-poset 18274 |
| This theorem is referenced by: odupos 18287 pltnle 18297 pltval3 18298 lublecllem 18319 poslubmo 18370 posglbmo 18371 latasymb 18401 latleeqj1 18410 latleeqm1 18426 posrasymb 32891 mgcf1olem1 32927 mgcf1olem2 32928 archirngz 33143 archiabllem1a 33145 ople0 39180 op1le 39185 atlle0 39298 |
| Copyright terms: Public domain | W3C validator |