![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > posasymb | Structured version Visualization version GIF version |
Description: A poset ordering is asymmetric. (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
posi.b | ⊢ 𝐵 = (Base‘𝐾) |
posi.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
posasymb | ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1170 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) | |
2 | simp2 1171 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
3 | simp3 1172 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
4 | posi.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
5 | posi.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
6 | 4, 5 | posi 17303 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌) → 𝑋 ≤ 𝑌))) |
7 | 1, 2, 3, 3, 6 | syl13anc 1495 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌) → 𝑋 ≤ 𝑌))) |
8 | 7 | simp2d 1177 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌)) |
9 | 4, 5 | posref 17304 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
10 | breq2 4877 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑋 ≤ 𝑋 ↔ 𝑋 ≤ 𝑌)) | |
11 | 9, 10 | syl5ibcom 237 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑌 → 𝑋 ≤ 𝑌)) |
12 | breq1 4876 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑋 ≤ 𝑋 ↔ 𝑌 ≤ 𝑋)) | |
13 | 9, 12 | syl5ibcom 237 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑌 → 𝑌 ≤ 𝑋)) |
14 | 11, 13 | jcad 508 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑌 → (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋))) |
15 | 14 | 3adant3 1166 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 → (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋))) |
16 | 8, 15 | impbid 204 | 1 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 class class class wbr 4873 ‘cfv 6123 Basecbs 16222 lecple 16312 Posetcpo 17293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-nul 5013 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-iota 6086 df-fv 6131 df-proset 17281 df-poset 17299 |
This theorem is referenced by: pltnle 17319 pltval3 17320 lublecllem 17341 latasymb 17407 latleeqj1 17416 latleeqm1 17432 odupos 17488 poslubmo 17499 posglbmo 17500 posrasymb 30191 archirngz 30277 archiabllem1a 30279 ople0 35255 op1le 35260 atlle0 35373 |
Copyright terms: Public domain | W3C validator |